

磁振影像學MRI 課程介紹與基本原理

盧家鋒 教授

國立陽明交通大學
生物醫學影像暨放射科學系
alvin4016@nycu.edu.tw

上課教材與課程影片

- 提供課後複習或其他未修課同學自修
- <https://cflu.lab.nycu.edu.tw> 點選Contents → Teaching Materials → MRI (UG)

教學目標

本課程旨在介紹磁振造影之基本原理、硬體與軟體程序、課程之安排與評量方式三項。課程內容將以討論形式進行，並結合實際操作，並非以單一鑑定乙級為目的，未來不論在研究領域（人類與動物影像研究）、臨床工作（醫事放射師）、產業應用（儀器製造與營銷）或或許相關（醫學器材產業），皆能以足夠之知識提供學生多面向之選擇發揮。

<http://cflu.lab.nycu.edu.tw>. Textbook: MRI The Basics, Hashemi et al.

2025/9/1

2

上課方式

- 內容講解
- 相關國考題

95~113年：放射線器材學

放射線診斷原理與技術學

https://cflu.lab.nycu.edu.tw/CFLu_course_BIRSmri.html

(B) 3.下列關於逆磁性 (diamagnetism) 物質的敘述，何者正確？
 A.逆磁性物質的磁化率 (susceptibility) 為正值
 B.含oxyhemoglobin為逆磁性物質
 C.在沒有外加磁場的情況下，逆磁性物質有一淨磁矩 (net magnetic moment)
 D.磁振造影對比劑 Gd螯合物為逆磁性物質

(103 年第二次放射線器材學第 39 題)

(D) 4.若磁振造影儀使用永久磁鐵，主磁場 (B0) 方向和激發射頻磁場 (B1) 方向通常與地面關係為何？

- A.平行：平行
- B.垂直：垂直
- C.平行：垂直
- D.垂直：平行

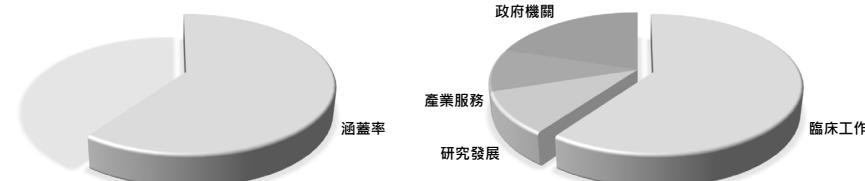
(103 年第一次放射線器材學第 36 題)

<http://cflu.lab.nycu.edu.tw>. Textbook: MRI The Basics, Hashemi et al.

2025/9/1

3

磁振影像學 Magnetic Resonance Imaging


http://cflu.lab.nycu.edu.tw/CFLu_course_BIRSmri.html

• 磁振成像原理

- 硬體設備、射頻脈衝、組織對比、影像重建、脈衝波序、影像假影與安全...等

放射師執照 (MRI)

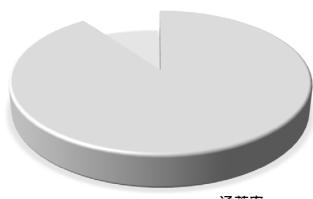
發展潛能

<http://cflu.lab.nycu.edu.tw>. Textbook: MRI The Basics, Hashemi et al.

2025/9/1

5

EMI course

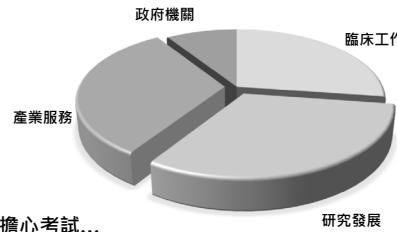

醫用磁振學 Magnetic Resonance in Medicine

http://cflu.lab.nycu.edu.tw/CFLU_course_BIRSmrm.html

• 磁振造影技術

- 對比劑增強、功能性影像、擴散影像、血管攝影、頻譜分析、平行造影...等

放射師執照 (MRI)



<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

• 陽明磁振造影室參觀與掃描

- 磁振造影室環境介紹、操作介面、影像掃描

發展潛能

別擔心考試...

2025/9/1

6

Magnetic Resonance Imaging

	Topics
Class 1	Introduction; Basic principles of MRI & Instrument
Class 2	Radio Frequency Pulse
Class 3	Relaxation time: T1, T2, and T2*
Class 4	TR, TE, and tissue contrast
Class 5 (9/29)	Off
Class 6 (10/6)	Off
Class 7	Image construction: slice selection & spatial encoding
Class 8	Image formation: K space
Class 9 (10/27)	Midterm exam

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

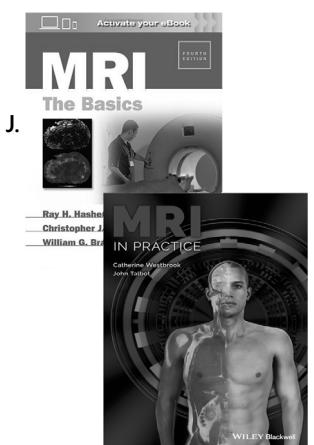
7

Magnetic Resonance Imaging

	Topics
Class 10	Pulse sequences I: spin echo (SE)
Class 11	Pulse sequences II: gradient echo (GRE)
Class 12	Pulse sequences III: echo planar imaging (EPI)
Class 13	Tissue suppression techniques
Class 14	Artifacts in MRI
Class 15	Safety issues in MRI
Class 16 (12/15)	Final exam

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1


8

參考書籍

• MRI The Basics (4th edition)

- Ray H. Hashemi, William G. Bradley, Christopher J. Lisanti
- Lippincott Williams & Wilkins, 2017

• MRI in Practice, (5th edition)

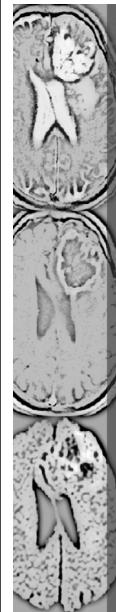
- Catherine Westbrook, Carolyn Kaut Roth, John Talbot
- Wiley Blackwell, 2018

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

9

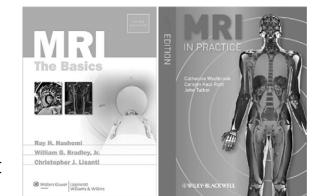
評分標準


- 出席率&課程參與度 (20%)
- 期中考 (40%)：選擇與簡答題
- 期末考 (40%)：選擇與簡答題

包含國考精選題 !!

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1


10

本週課程內容 <http://cflu.lab.nycu.edu>

- 磁振造影設備
- 磁振原理

- MRI The Basics (3rd edition)**
 - Chapter 2: Basic Principles of MRI
- MRI in Practice, (4th edition)**
 - Chapter 1: Basic Principles
 - Chapter 9: Instrumentation and equipment

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

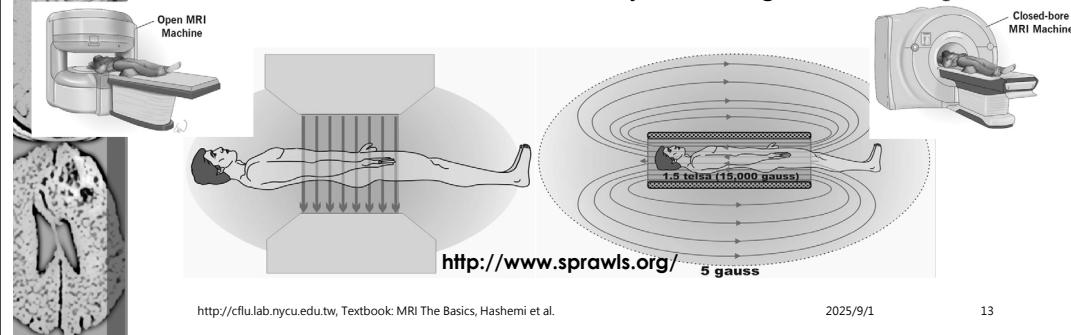
2025/9/1

11

磁振造影設備

MRI Instrument

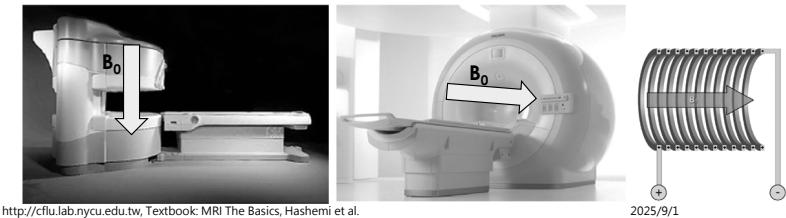
<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.


2025/9/1

12

External B_0 Magnetic Field

- On the order of 1 Tesla (1T) = 10000 Gauss (0.5 Gauss for earth's magnetic field in average)
- Required magnetic uniformity is less than 5 ppm (parts per million), which can be achieved by shimming and shielding.


<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

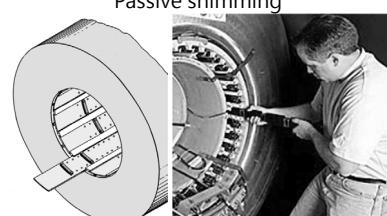
2025/9/1

13

Types of Magnets

- Permanent magnets (for open MRI scanners), always stay on
- Resistive magnets (for low field MRI), can be turned on/off
- Superconducting magnets (the most common today)
 - operate near absolute zero temperature
 - generate a high B_0 without generating significant heat
 - require cryogens (interior 40K liquid helium; outer 770K liquid nitrogen), very expensive !!
 - Niobium-titanium alloy (铌钛合金)

alnico alloy: 鋁鋁鎂(Al)、鎳鎳(Ni)、鈷鎳(Co)合金

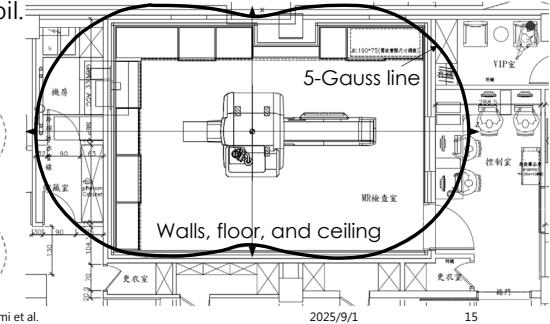
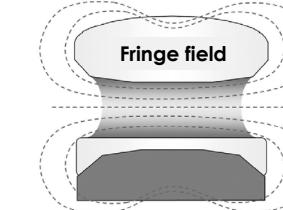

2025/9/1

14

(補墊) Shimming

Generally **passive shimming** is used to get the magnetic field to a particular level of homogeneity and then **active shimming** is used to optimize for each patient examination.

- Passive shimming
 - involving the use of ferromagnetic materials, typically iron or steel, placed in a regular pattern at specific locations along the inner bore of the magnet.
- Active shimming
 - performed by an electromagnetic coil and can be used to shim the system for each patient or even each sequence within a protocol.



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

16

(屏蔽) Shielding

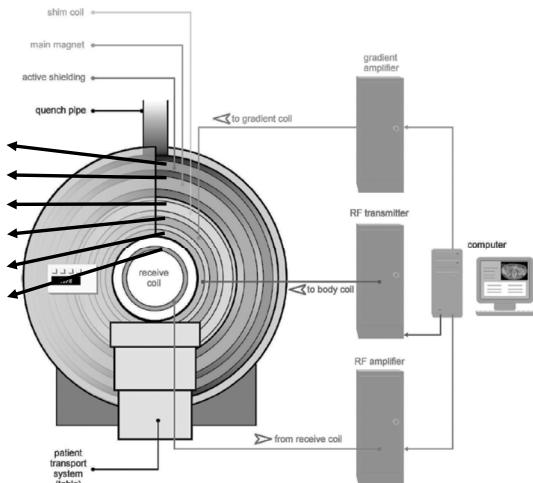
- Passive (magnetic) shielding:** scanner room with galvanized steel plates
 - RF shielding is accomplished by lining the scan room walls with copper.
- Active shielding:** additional solenoid electromagnets located around the outside of the main magnet coil.
- 5 Gauss line – safety zone**

2025/9/1

15

Coils

- Gradient coils
 - Shim coil – increase B_0 homogeneities
 - Imaging gradient coil – intentional perturbation for spatial encoding
- Transmit and/or receive RF coils
 - Linear phase or quadrature (receive or transmit)
 - Surface or volume (Helmholtz or solenoid)
 - Single or phased-array


2025/9/1

17

Setup

- Outer \rightarrow inner
 - Active shielding
 - Main magnet
 - Shim coil
 - Gradient coil
 - Body coil
 - Receive coil

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

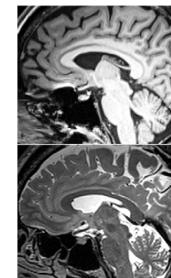
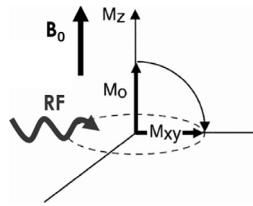
2025/9/1

18

磁振原理

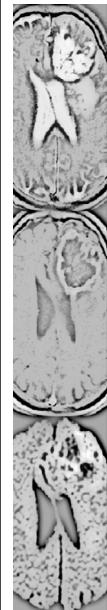
MR Principles

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.



2025/9/1

19

Procedure of MRI


1. Alignment (magnetization) B_0
2. Precession $\omega_0 = \gamma B_0$
3. Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$
 - The most effective resonance is produced when $\omega_0 = \omega_2$
4. MR signal (EMF, electromotive force)
5. Imaging (Pulse sequencing)
 - Image Contrast: Relaxation time
 - Spatial localization: Spatial Encoding

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

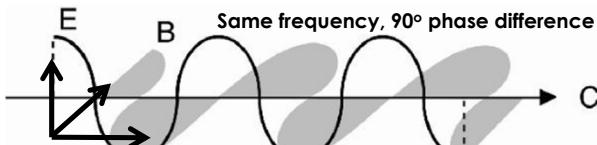
2025/9/1

20

Electromagnetic Waves

- All travel at the speed of light $c = 3 \times 10^8$ m/sec
- Maxwell's wave theory:
 - an electric field E
 - A magnetic field B

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.


	Frequency (Hz)	Energy (eV)	Wavelength (m)
Gamma rays and X-rays	10^{24}	10^{10}	10^{-16}
	10^{23}	10^9	10^{-15}
	10^{22}	10^8	10^{-14}
	10^{21}	10^7	10^{-13}
	10^{20}	10^6 (1 MeV)	10^{-12} (1 pm)
	10^{19}	10^5	10^{-11}
	10^{18}	10^4	10^{-10}
Ultraviolet	10^{17}	10^3 (1 keV)	10^{-9} (1 nm)
	10^{16}	10^2	10^{-8}
Visible light	10^{15}	10^1	10^{-7}
Infrared	10^{14}	10^0 (1 eV)	10^{-6} (1 μ)
	10^{13}	10^{-1}	10^{-5}
Microwaves	10^{12} (1 GHz)	10^{-2}	10^{-4}
	10^{11}	10^{-3}	10^{-3} (1 mm)
	10^{10}	10^{-4}	10^{-2} (1 cm)
	10^9	10^{-5}	10^{-1}
MRI	10^8 (100 MHz)	10^{-6}	10^0 (1 m)
	10^7	10^{-7}	10^1

2025/9/1

21

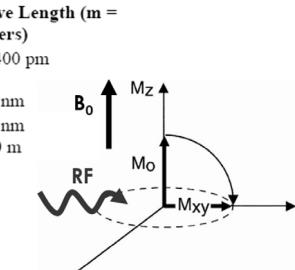
Electromagnetic Waves

- The angular frequency $\omega=2\pi f$, f is linear frequency
- We are interested in the magnetic field rather than the electric field
 - Electric field generates heat

Changes in the E generates the B, and vice versa.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

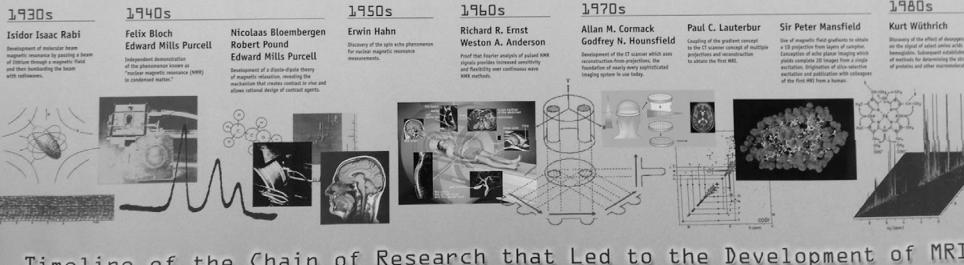

22

Radio frequency (RF) pulse

- The electromagnetic pulse used in MRI to get a signal is called an RF pulse.

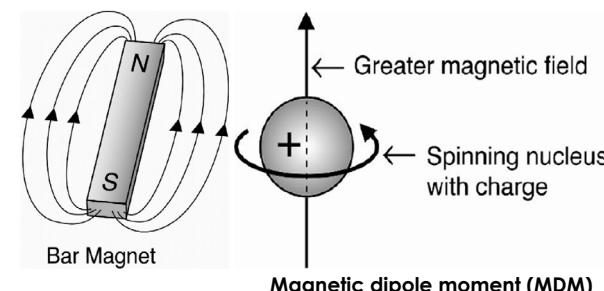
	Frequency (Hz = Hertz)	Energy (eV = electron volts)	Wave Length (m = meters)
X-ray	$1.7-3.6 \times 10^{18}$ Hz	30-150 KeV	80-400 pm
Visible light (violet)	7.5×10^{14} Hz	3.1 eV	400 nm
Visible light (red)	4.3×10^{14} Hz	1.8 eV	700 nm
MRI	3-100 MHz	20-200 meV	6-60 m

AM radio frequency 0.54-1.6 MHz (540-1600 kHz)
 TV (Channel 2) Slightly over 64 MHz
 FM radio frequency 88.8-108.8 MHz
 RF used in MRI 3-100 MHz




<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

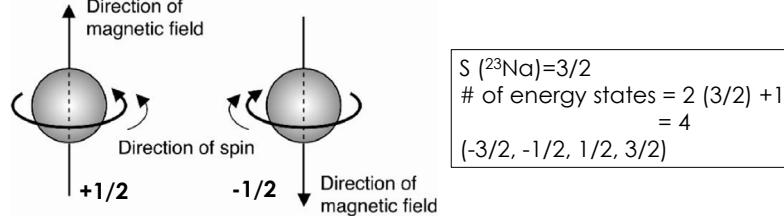

23

Nobel Prizes in Magnetic Resonance

Spins and electromagnetic field

- Felix Bloch** (Stanford University, Nobel prize in physics, 1952)
 - Any spinning charged particle (such as the **hydrogen nucleus**) creates an electromagnetic field.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

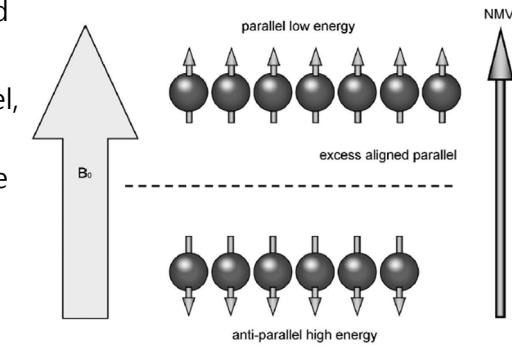

2025/9/1

25

Quantum theory: Energy levels

- The hydrogen nucleus (a proton) has a **spin quantum number (S)**
 $S (^1H) = 1/2$
- The number of energy states of a nucleus

$$\# \text{ of energy states} = 2S + 1 \text{ (for } ^1H = 2)$$

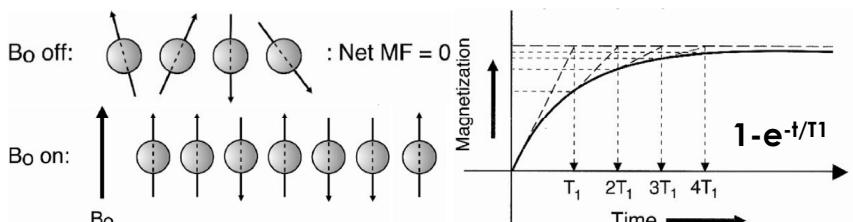

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

26

Net Magnetic Vector (NMV)

- With B_0 , protons line up and approximately half spin-up (parallel, low energy) and half spin-down (anti-parallel, high energy).
- About one in a million more protons point in the direction of B_0 .
- ppm (parts per million)


<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

27

Alignment & T1 Relaxation time

- At time $t = 0$, proton spins are distributed randomly and net magnetic field is zero.
- Immediately after B_0 is presented, magnetization increases over time.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

28

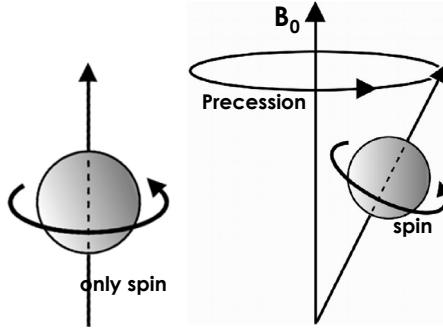
Spin and Precession

- Wheel rolling: spin
- Gravity: B_0
- Spiral precession

[Magritek videos on youtube \(6:33\)!!](#)

2025/9/1

29


Precession

- With B_0 , the proton not only spins about its own axis, but also precesses about the axis of the B_0 .
- Each proton spins much faster about its own axis than it rotates around the axis of the B_0 .
- Larmor equation (frequency)**

$$\omega = \gamma B_0$$

γ is gyromagnetic ratio (MHz/T)

For B_0 from 1.5T \rightarrow 3T
 $\omega = 42.6 \times 1.5T = 63.9$ MHz
 $= 42.6 \times 3.0T = 127.8$ MHz
The RF range for MRI !!

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

Magnetic dipole moment (MDM)

- An MDM is found in any nucleus with an **odd number of protons, neutrons, or both**.
- MDM is the signal source of MRI.

Spin Quantum Number (S) Gyromagnetic Ratio (MHz/T)

1P0N	1H	1/2	42.6
9P10N	^{19}F	1/2	40.0
11P12N	^{23}Na	3/2	11.3
6P7N	^{13}C	1/2	10.7
8P9N	^{17}O	5/2	5.8

$S \neq 0$, can be MR signal source

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

31

Hydrogen Nucleus (1H)

- We use hydrogen for imaging because of...
 - its abundance (about 60~70% of body is water)
 - Hydrogen protons (1H) in water (H_2O) and fat ($-CH_2-$)
 - its high MR sensitivity (high gyromagnetic ratio, $\gamma = 42.58$ MHz/T)

Spin Quantum Number (S) Gyromagnetic Ratio (MHz/T)

1P0N	1H	1/2	42.6
9P10N	^{19}F	1/2	40.0
11P12N	^{23}Na	3/2	11.3
6P7N	^{13}C	1/2	10.7
8P9N	^{17}O	5/2	5.8

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

32

Magnetic Susceptibility, χ

- χ is the measure of magnetizability of a substance.
- The χ is defined as the ratio of the induced magnetic field (M) to the applied magnetic field H :

$$M = \chi H \text{ or } \chi = M/H.$$

- The *magnetic induction field* or *magnetic flux density*, B , is the net magnetic field effect caused by an external magnetic field H :

$$B = \mu H = (1 + \chi)H = H + M.$$

μ represents the *magnetic permeability*.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

33

Magnetic Substances

- **Diamagnetic**

- No unpaired orbital electrons
- Under an external B_0 , a weak M is induced in the opposite direction to B_0 ($\chi < 0$ and $\mu < 1$).
- Most tissues in body are diamagnetic.

- **Paramagnetic**

- Unpaired orbital electrons
- M is in the same direction as B_0 ($\chi > 0$ and $\mu > 1$).
- Become demagnetized once the B_0 has been turned off.
- Dipole-dipole (proton-proton and proton-electron) interactions cause T1 shortening (bright signal on T1-weighted images)
- gadolinium (Gd) chelates – contrast agent

- **Superparamagnetic**

- breakdown products of hemoglobin: deoxyhemoglobin, methemoglobin, hemosiderin

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

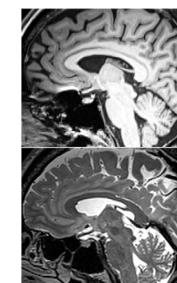
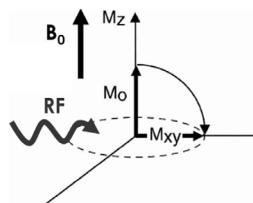
34

Magnetic Substances

- **Ferromagnetic**

- Become permanently magnetized even after the magnetic field has been turned off ($\chi \gg 0$ and $\mu \gg 1$).
- Iron (Fe), cobalt (Co), and nickel (Ni)
- Aneurysm clips and shrapnel

potential projectiles! Safety issue!



<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

35

Procedure of MRI

- Alignment (magnetization) B_0
- Precession $\omega_0 = \gamma B_0$
- Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$
 - The most effective resonance is produced when $\omega_0 = \omega_2$
- MR signal (EMF, electromotive force)
- Imaging (Pulse sequencing)
 - Image Contrast: Relaxation time
 - Spatial localization: Spatial Encoding

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

36

THE END

alvin4016@nycu.edu.tw

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/9/1

37