

磁振影像學MRI 基本原理與設備

盧家鋒 副教授

國立陽明交通大學 生物醫學影像暨放射科學系 alvin4016@nycu.edu.tw

本週課程內容 <u>http://cflu.lab.nycu.edu</u>

・磁振原理

•磁振造影設備 (上週內容複習)

• MRI The Basics (3rd edition)

- Chapter 2: Basic Principles of MRI
- MRI in Practice, (4th edition)
 - Chapter 1: Basic Principles
 - Chapter 9: Instrumentation and equipment

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

Procedure of MRI

- 1. Alignment (magnetization) B₀
- 2. Precession $\omega_0 = \gamma B_0$
- 3. Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$ • The most effective resonance is produced when $\omega_0 = \omega_2$
- 4. MR signal (EMF, electromotive force)
- 5. Imaging (Pulse sequencing)
 - Image Contrast: Relaxation time
 - Spatial localization: Spatial Encoding

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

Bo

磁振原理

MR Principles

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

Electromagnetic Waves

- The angular frequency $\omega = 2\pi f_i$ f is linear frequency
- We are interested in the magnetic field rather than the electric field • Electric field generates heat

Changes in the E generates the B, and vice versa.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

6

Radio frequency (RF) pulse

• The electromagnetic pulse used in MRI to get a signal is called an RF pulse.

	Frequency (Hz = Hertz)	Energy (eV = electron volts)			
X-ray	$1.7\text{-}3.6\times10^{18}~\text{Hz}$	30-150 KeV			
Visible light (violet)	$7.5\times 10^{14}~\text{Hz}$	3.1 eV			
Visible light (red)	$4.3\times 10^{14}~Hz$	1.8 eV			
MRI	3-100 MHz	20-200 meV			
AM radio frequency0 54-1 6 MHz (540-1600 kHz)					

AM radio frequency0.54-1.6 MHz (540-1600 kHz) TV (Channel 2) Slightly over 64 MHz FM radio frequency 88.8-108.8 MHz RF used in MRI 3-100 MHz

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

Mz

Wave Length (m =

RF

meters)

400 nm

700 nm

6-60 m

80-400 pm

Spins and electromagnetic field

• Felix Bloch (Standard University, Nobel prize in physics, 1952) • Any spinning charged particle (such as the hydrogen nucleus) creates an electromagnetic field.

B

Quantum theory: Energy levels

- The hydrogen nucleus (a proton) has a spin guantum number (S) S (¹H)=1/2
- The number of energy states of a nucleus

Net Magnetic Vector (NMV)

- With B_{0} , protons line up and approximately half spin-up (parallel, low energy) and half spin-down (anti-parallel, high energy).
- About one in a million more protons point in the direction of B_0 .
- ppm (parts per million)

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

narallel low energy

2023/9/18

11

Alignment & T1 Relaxation time

- At time t = 0, proton spins are distributed randomly and net magnetic field is zero.
- Immediately after B₀ is presented, magnetization increases over time.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

Spin and Precession

- Wheel rolling: spin
 Gravity: B₀
- Spiral precession

Magritek videos on youtube (6:33)!!

13

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

Precession

- With B_0 , the proton not only spins about its own axis, but also precesses about the axis of the B_0 .
- Each proton spins much faster about its own axis than it rotates around the axis of the B_0 .
- Larmor equation (frequency)

Magnetic dipole moment (MDM)

- An MDM is found in any nucleus with an odd number of protons, neutrons, or both.
- MDM is the signal source of MRI.

Spin Quantum Number	r (S)Gyromagnetic	Ratio (MHz/T)
---------------------	-------------------	---------------

1P0N	'H	1/2	42.6
9P10N	¹⁹ F	1/2	40.0
11P12N	²³ Na	3/2	11.3
6P7N	¹³ C	1/2	10.7
8P9N	¹⁷ 0	5/2	5.8

$S \neq 0$, can be MR signal source

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

15

2023/9/18

Hydrogen Nucleus (¹H)

- We use hydrogen for imaging because of...
 - its abundance (about 60~70% of body is water)
 - Hydrogen protons (¹H) in water (H₂O) and fat (-CH₂-)
 - its high MR sensitivity (high gyromagnetic ratio, $\gamma = 42.58 \text{ MHz/T}$)

Spin Quantum Number (S)Gyromagnetic Ratio (MHz/T)

1P0N	¹ H	1/2	42.6
9P10N	¹⁹ F	1/2	40.0
11P12N	²³ Na	3/2	11.3
6P7N	¹³ C	1/2	10.7
8P9N	¹⁷ 0	5/2	5.8

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

16

Magnetic Susceptibility, χ

- χ is the measure of magnetizability of a substance.
- The χ is defined as the ratio of the induced magnetic field (M) to the applied magnetic field H:

 $M = \chi H$ or $\chi = M/H$.

- The *magnetic induction field* or *magnetic flux density*, B, is the net magnetic field effect caused by an external magnetic field H:
 - $B = \mu H = (1 + \chi)H = H + M.$

 μ represents the *magnetic permeability*.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

17

Magnetic Substances

• Diamagnetic

- No unpaired orbital electrons
- Under an external $B_{0^{\prime}}$ a weak M is induced in the opposite direction to B_{0} ($\chi < 0$ and $\mu < 1$).
- Most tissues in body are diamagnetic.

Paramagnetic

- Unpaired orbital electrons
- M is in the same direction as B_0 (χ >0 and μ >1).
- Become demagnetized once the B_0 has been turn off.
- Dipole-dipole (proton-proton and proton-electron) interactions cause T1 shortening (bright signal on T1-weighted images)
- gadolinium (Gd) contrast agent

• Superparamagnetic

breakdown products of hemoglobin: deoxyhemoglobin, methemoglobin, hemosiderin

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

18

Magnetic Substances

- Ferromagnetic
 - Become permanently magnetized even after the magnetic field has been turned off (χ >>0 and μ >>1).
 - Iron (Fe), cobalt (Co), and nickel (Ni)
 - Aneurysm clips and shrapnel

potential projectiles! Safety issue!

磁振造影設備

MRI Instrument

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

19

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

20

External B₀ Magnetic Field

- On the order of 1 Tesla (1T) = 10000 Gauss (0.5 Gauss for earth's magnetic field in average)
- Required magnetic uniformity is less than 5 ppm (parts per million), which can be achieved by shimming and shielding.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

21

Types of Magnets, alnico alloy: 鋁aluminum(Al)、 錄nickel(Ni)、鈷cobalt(Co)合金

- Permanent magnets (for open MRI scanners), always stay on
- Resistive magnets (for low field MRI), can be turned on/off
- Superconducting magnets (the most common today)
 - operate near absolute zero temperature
 - generate a high B₀ without generating significant heat
 - require cryogens (interior 4°K liquid helium; outer 77°K liquid nitrogen), very expensive !!
 - Niobium-titanium alloy (鈮鈦合金)

http://cflu.lab.pvcu.edu.tw_Textbook: MRI The Basics

(屏蔽) Shielding

- 1) Prevent extraneous electromagnetic waves from contaminating/distorting the MR signal 2) Reduce electromagnetic field generated by the MR scanner
- Passive (magnetic) shielding: scanner room with galvanized steel plates
 - RF shielding is accomplished by lining the scan room walls with copper.
- Active shielding: additional solenoid electromagnets located around the outside of the main magnet coil
- 5 Gauss line safety zone

Shimming

Generally passive shimming is used to get the magnetic field to a particular level of homogeneity and then active shimming is used to optimize for each patient examination.

- Passive shimming
 - involving the use of ferromagnetic materials, typically iron or steel, placed in a regular pattern at specific locations along the inner bore of the magnet. Passive shimming
- Active shimming
 - performed by an electromagnetic coil and can be used to shim the system for each patient or even each sequence within a protocol.

12-24 sliding trays arranged symmetrically with metallic shims http://mriauestions.com/passive-shimming.html

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

24

Coils

• Gradient coils

- Shim coil increase B₀ homogeneities
- Imaging gradient coil intentional perturbation for spatial encoding

• Transmit and/or receive RF coils

- Linear phase or quadrature (receive or transmit)
- Surface or volume (Helmholtz or solenoid)
- Single or phased-array

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

RF Coils

- A transmitter coil transmits an RF pulse
- A receiver coil receives an RF pulse

• Types of coils

- Body coils: both transmitters and receivers, a part of magnet
- Head coils: both transmitters and receivers, a helmet-like device
- Surface coils: just receivers, imaging joints

Quadrature-phased array coils

 Multiple elements of coils, larger FOV and better SNR

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

27

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18

THE END

alvin4016@nycu.edu.tw

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/18 29