

磁振影像學MRI 基本原理與設備

盧家鋒 副教授

國立陽明交通大學
生物醫學影像暨放射科學系
alvin4016@nycu.edu.tw

本週課程內容 <http://cflu.lab.nycu.edu>

- 磁振原理
- 磁振造影設備

- MRI The Basics (3rd edition)
 - Chapter 2: Basic Principles of MRI
- MRI in Practice, (4th edition)
 - Chapter 1: Basic Principles
 - Chapter 9: Instrumentation and equipment

<http://cflu.lab.nycu.edu.tw>. Textbook: MRI The Basics, Hashemi et al.

2025/3/30

2

Procedure of MRI

- 1. Alignment (magnetization) B_0
- 2. Precession $\omega_0 = \gamma B_0$
- 3. Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$
 - The most effective resonance is produced when $\omega_0 = \omega_2$
- 4. MR signal (EMF, electromotive force)
- 5. Imaging (Pulse sequencing)
 - Image Contrast: Relaxation time
 - Spatial localization: Spatial Encoding

<http://cflu.lab.nycu.edu.tw>. Textbook: MRI The Basics, Hashemi et al.

2025/3/30

3

磁振原理

MR Principles

<http://cflu.lab.nycu.edu.tw>. Textbook: MRI The Basics, Hashemi et al.

2025/3/30

4

Electromagnetic Waves

- All travel at the speed of light $c = 3 \times 10^8$ m/sec
- Maxwell's wave theory:
 - an electric field E
 - A magnetic field B

	Frequency (Hz)	Energy (eV)	Wavelength (m)
Gamma rays and X-rays	10^{24}	10^{10}	10^{-16}
	10^{23}	10^9	10^{-15}
	10^{22}	10^8	10^{-14}
	10^{21}	10^7	10^{-13}
	10^{20}	10^6 (1 MeV)	10^{-12} (1 pm)
	10^{19}	10^5	10^{-11}
	10^{18}	10^4	10^{-10}
Ultraviolet	10^{17}	10^3 (1 keV)	10^{-9} (1 nm)
	10^{16}	10^2	10^{-8}
Visible light	10^{15}	10^1	10^{-7}
Infrared	10^{14}	10^0 (1 eV)	10^{-6} (1 μ)
	10^{13}	10^{-1}	10^{-5}
Microwaves	10^{12} (1 GHz)	10^{-2}	10^{-4}
	10^{11}	10^{-3}	10^{-3} (1 mm)
	10^{10}	10^{-4}	10^{-2} (1 cm)
	10^9	10^{-5}	10^{-1}
MRI	10^8 (100 MHz)	10^{-6}	10^0 (1 m)
	10^7	10^{-7}	10^1

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

5

Electromagnetic Waves

- The angular frequency $\omega = 2\pi f$, f is linear frequency
- We are interested in the magnetic field rather than the electric field
 - Electric field generates heat

Changes in the E generates the B, and vice versa.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

6

Radio frequency (RF) pulse

- The electromagnetic pulse used in MRI to get a signal is called an RF pulse.

	Frequency (Hz = Hertz)	Energy (eV = electron volts)	Wave Length (m = meters)
X-ray	$1.7\text{--}3.6 \times 10^{18}$ Hz	30-150 KeV	80-400 pm
Visible light (violet)	7.5×10^{14} Hz	3.1 eV	400 nm
Visible light (red)	4.3×10^{14} Hz	1.8 eV	700 nm
MRI	3-100 MHz	20-200 meV	6-60 m

AM radio frequency 0.54-1.6 MHz (540-1600 kHz)
 TV (Channel 2) Slightly over 64 MHz
 FM radio frequency 88.8-108.8 MHz
 RF used in MRI 3-100 MHz

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

7

Nobel Prizes in Magnetic Resonance

Isidor Isaac Rabi
Nobel Prize in Physics

"for his resonance method for recording the magnetic properties of atomic nuclei and for his work on molecular beam methods."

Felix Bloch and Edward Mills Purcell
Nobel Prize in Physics

"for their development of nuclear magnetic resonance methods for determining the magnetic properties of atomic nuclei."

Richard R. Ernst
Nobel Prize in Chemistry

"for his contributions to the development of the technique of nuclear magnetic resonance spectroscopy."

Kurt Wüthrich
Nobel Prize in Chemistry

"for his development of nuclear magnetic resonance methods for determining the three-dimensional structure of biological macromolecules in solution."

Paul C. Lauterbur and Sir Peter Mansfield
Nobel Prize in Physiology or Medicine

"for their discoveries concerning magnetic resonance imaging."

MDM

Magnetic properties

1930s

Isidor Isaac Rabi
Development of molecular beam magnetic resonance by passing a beam of atoms through a magnetic field and then bombarding the beam with microwaves.

Felix Bloch
Independent demonstration of nuclear magnetic resonance by using a rotating magnetic field to observe the resonance absorption.

Richard R. Ernst
Development of a digital-digital Fourier transform computer program for NMR spectroscopy.

Kurt Wüthrich
Development of the 1D NMR which uses a rotating magnetic field and a rotating gradient magnetic field to obtain the 2D NMR.

NMR

NMR

Sir Peter Mansfield
Discovery of the effect of magnetic field gradients in NMR and the use of magnetic field gradients in NMR to obtain 2D NMR spectra. Development of echo planar imaging which uses a rotating magnetic field and a rotating gradient magnetic field to obtain the 2D NMR.

MRI

Kurt Wüthrich
Discovery of the effect of magnetic field gradients in NMR and the use of magnetic field gradients in NMR to obtain 2D NMR.

Timeline of the Chain of Research that Led to the Development of MRI

Spins and electromagnetic field

- **Felix Bloch** (Stanford University, Nobel prize in physics, 1952)
 - Any spinning charged particle (such as the **hydrogen nucleus**) creates an electromagnetic field.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

9

Quantum theory: Energy levels

- The hydrogen nucleus (a proton) has a **spin quantum number (S)**

$$S (^1H) = 1/2$$
- The number of energy states of a nucleus

$$\# \text{ of energy states} = 2S+1 \text{ (for } ^1H = 2)$$

$S (^{23}Na) = 3/2$
 $\# \text{ of energy states} = 2 (3/2) + 1 = 4$
 $(-3/2, -1/2, 1/2, 3/2)$

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

10

Net Magnetic Vector (NMV)

- With B_0 , protons line up and approximately half spin-up (parallel, low energy) and half spin-down (anti-parallel, high energy).
- About one in a million more protons point in the direction of B_0 .
- ppm (parts per million)

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

11

Alignment & T1 Relaxation time

- At time $t = 0$, proton spins are distributed randomly and net magnetic field is zero.
- Immediately after B_0 is presented, magnetization increases over time.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

12

Spin and Precession

- Wheel rolling: spin
- Gravity: B_0
- Spiral precession

[Magritek videos on youtube \(6:33\)!!](#)

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

13

Precession

- With B_0 , the proton not only spins about its own axis, but also precesses about the axis of the B_0 .
- Each proton spins much faster about its own axis than it rotates around the axis of the B_0 .
- **Larmor equation (frequency)**

$$\omega = \gamma B_0$$

γ is gyromagnetic ratio (MHz/T)

For B_0 from 1.5T \rightarrow 3T
 $\omega = 42.6 \times 1.5T = 63.9$ MHz
 $= 42.6 \times 3.0T = 127.8$ MHz
 The RF range for MRI !!

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

14

Magnetic dipole moment (MDM)

- An MDM is found in any nucleus with **an odd number of protons, neutrons, or both**.
- MDM is the signal source of MRI.

	Spin Quantum Number (S)	Gyromagnetic Ratio (MHz/T)
1P0N	1H	1/2
9P10N	^{19}F	1/2
11P12N	^{23}Na	3/2
6P7N	^{13}C	1/2
8P9N	^{17}O	5/2

$S \neq 0$, can be MR signal source

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

15

Hydrogen Nucleus (1H)

- We use hydrogen for imaging because of...
 - its abundance (about 60~70% of body is water)
 - Hydrogen protons (1H) in water (H_2O) and fat ($-CH_2-$)
 - its high MR sensitivity (high gyromagnetic ratio, $\gamma = 42.58$ MHz/T)

	Spin Quantum Number (S)	Gyromagnetic Ratio (MHz/T)
1P0N	1H	1/2
9P10N	^{19}F	1/2
11P12N	^{23}Na	3/2
6P7N	^{13}C	1/2
8P9N	^{17}O	5/2

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

16

Magnetic Susceptibility, χ

- χ is the measure of magnetizability of a substance.
- The χ is defined as the ratio of the induced magnetic field (M) to the applied magnetic field H:

$$M = \chi H \text{ or } \chi = M/H.$$

- The *magnetic induction field* or *magnetic flux density*, B, is the net magnetic field effect caused by an external magnetic field H:

$$B = \mu H = (1+\chi)H = H + M.$$

μ represents the *magnetic permeability*.

Magnetic Substances

Diamagnetic

- No unpaired orbital electrons
- Under an external B_0 , a weak M is induced in the opposite direction to B_0 ($\chi < 0$ and $\mu < 1$).
- Most tissues in body are diamagnetic.

Paramagnetic

- Unpaired orbital electrons
- M is in the same direction as B_0 ($\chi > 0$ and $\mu > 1$).
- Become demagnetized once the B_0 has been turned off.
- Dipole-dipole (proton-proton and proton-electron) interactions cause T1 shortening (bright signal on T1-weighted images)
- gadolinium (Gd) chelates – contrast agent

Superparamagnetic

- breakdown products of hemoglobin: deoxyhemoglobin, methemoglobin, hemosiderin

Magnetic Substances

Ferromagnetic

- Become permanently magnetized even after the magnetic field has been turned off ($\chi \gg 0$ and $\mu \gg 1$).
- Iron (Fe), cobalt (Co), and nickel (Ni)
- Aneurysm clips and shrapnel

potential projectiles! Safety issue!

磁振造影設備

MRI Instrument

External B_0 Magnetic Field

- On the order of 1 Tesla (1T) = 10000 Gauss (0.5 Gauss for earth's magnetic field in average)
- Required magnetic uniformity is less than 5 ppm (parts per million), which can be achieved by shimming and shielding.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

21

Types of Magnets

- Permanent magnets (for open MRI scanners), always stay on
- Resistive magnets (for low field MRI), can be turned on/off
- Superconducting magnets (the most common today)
 - operate near absolute zero temperature
 - generate a high B_0 without generating significant heat
 - require cryogens (interior 4°K liquid helium; outer 77°K liquid nitrogen), very expensive !!
 - Niobium-titanium alloy (铌钛合金)

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

22

(屏蔽) Shielding

- Passive (magnetic) shielding: scanner room with galvanized steel plates
 - RF shielding is accomplished by lining the scan room walls with copper.
- Active shielding: additional solenoid electromagnets located around the outside of the main magnet coil.
- 5 Gauss line – safety zone

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

23

(補墊) Shimming

Generally **passive shimming** is used to get the magnetic field to a particular level of homogeneity and then **active shimming** is used to optimize for each patient examination.

- Passive shimming
 - involving the use of ferromagnetic materials, typically iron or steel, placed in a regular pattern at specific locations along the inner bore of the magnet.
- Active shimming
 - performed by an electromagnetic coil and can be used to shim the system for each patient or even each sequence within a protocol.

12-24 sliding trays arranged symmetrically with metallic shims
<http://mriquestions.com/passive-shimming.html>

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

24

Coils

- Gradient coils
 - Shim coil – increase B_0 homogeneities
 - Imaging gradient coil – intentional perturbation for spatial encoding
- Transmit and/or receive RF coils
 - Linear phase or quadrature (receive or transmit)
 - Surface or volume (Helmholtz or solenoid)
 - Single or phased-array

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

25

RF Coils

- A transmitter coil transmits an RF pulse
- A receiver coil receives an RF pulse
- Types of coils
 - Body coils: both transmitters and receivers, a part of magnet
 - Head coils: both transmitters and receivers, a helmet-like device
 - Surface coils: just receivers, imaging joints
- Quadrature-phased array coils
 - Multiple elements of coils, larger FOV and better SNR

2025/3/30

26

Setup

- Outer \rightarrow inner
 - Active shielding
 - Main magnet
 - Shim coil
 - Gradient coil
 - Body coil
 - Receive coil

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

27

Procedure of MRI

- Alignment (magnetization) B_0
- Precession $\omega_0 = \gamma B_0$
- Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$
 - The most effective resonance is produced when $\omega_0 = \omega_2$
- MR signal (EMF, electromotive force)
- Imaging (Pulse sequencing)
 - Image Contrast: Relaxation time
 - Spatial localization: Spatial Encoding

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/3/30

28

THE END

alvin4016@nycu.edu.tw