

磁振影像學MRI 射頻脈衝與設備 國立陽明交通大學 生物醫學影像暨放射科學系

Procedure of MRI	^B ₀ 1
\Box Alignment (magnetization) B ₀	RF
\Box Precession $\omega_0 = \gamma B_0$	
 Resonance (given B₁ by RF with ω₂) ω₁ = γB₁, The most effective resonance is produced when ω₀ 	
MR signal (EMF, electromotive force)	
 Imaging (Pulse sequencing) Image Contrast: Relaxation time Spatial localization: Spatial Encoding 	

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

本週課程內容 <u>http://cflu.lab.nycu.edu.tw</u>

- · 射頻脈衝
- 射頻線圈

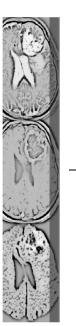
• MRI The Basics (3rd edition)

• Chapter 3: Radio Frequency Pulse

- MRI in Practice, (4th edition)
 - Chapter 9: Instrumentation and equipment

射頻脈衝

Radio Frequency (RF) Pulse


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

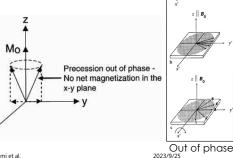
3

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

A Readable Signal

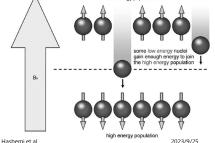
- We can only transmit and receive oscillated signals (like an AC voltage).
- We are only sensitive to oscillations along certain axes.
- The longitudinal magnetization is *not* an oscillating function (like a DC voltage).
- The longitudinal magnetization needs to be "flipped" into the transverse x-y planes (where it can oscillated or precess about z axis) to generate a readable signal.


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

Magnetization Vector M₀

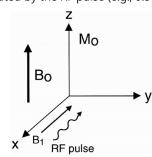
- The individual spins are precessing along z-axis and "*out of phase*" with each other.
- The x and y components cancel each other out.



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

Radio Frequency Pulse

- Create phase coherence
- Flip some of the spins from a low-energy state to a highenergy state
- Transfer the NMV along the Z axis toward the transverse X-Y plane.


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

/25

Radio Frequency Pulse B₁

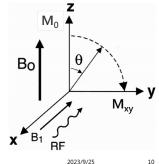
- Two different magnetic fields:
 - $B_0 = a \text{ very strong external magnetic field (e.g., 1.5T~3.0T)}$
 - $B_1 = a$ very weak magnetic field generated by the RF pulse (e.g., 0.5~5 mT)
- Two types of precessions
- $\omega_0 = \gamma B_0$, along z-axis
- $\omega_1 = \gamma B_1$, along x-axis
- Since $B_1 \ll B_0$
 - then $\omega_1 \ll \omega_0$

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

Radio Frequency Pulse B₁

- B₀ is a fixed magnetic field (much like a DC voltage)
- + B_1 is an oscillating magnetic field (much like an AC voltage)
 - It is derived from the magnetic component of an oscillating electromagnetic wave.
- The RF pulse has a $cos(\omega_2 t)$ wave form.
- Precessing along z-axis at frequency ω₀ and x-axis at frequency ω₁ simultaneously.
 → spiral motion (nutation)

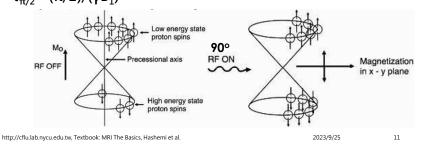

 u_{u}^{v}

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

Resonance $\omega_0 = \omega_2$

- By introducing the B1, the spinning protons will then be in phase → creates transverse magnetization
- The B1 field also causes a spiral downward motion of the protons → flipping
- The flip angle is determined by
 - $\theta = \gamma B_1 \tau = \omega_1 \tau$
 - + τ is the duration of the RF pulse
 - B₁ is the strength of the RF pulse
 - + γ is the gyromagnetic ration of protons


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al

90° RF Pulse

- The pulse that causes the 90° flip is called a 90° RF pulse.
- The entire magnetization vector flips into the x-y plane
- \rightarrow M_{xy} = M₀
- $\tau_{\pi/2} = (\pi/2)/(\gamma B_1)$

180° RF Pulse

- A 1800 pulse exactly reverses the equilibrium northwardpointing excess without inducing phase coherece (transverse magnetization).
- τ_π = π/(γB₁)
- Used in the pulse sequence of inversion recovery

Partial Flip

- A partial flip has a flip less than 90°
- $M_{xy} = M_0 \cdot \sin\theta < M_0$
- Commonly used in gradient echo imaging.

Receiver coils

- Faraday's law of induction
- $\cdot dB/dt = dv$

where, dB is the changing magnetic field (oscillating magnetic field) dt is the changing time

dv is the changing voltage (MR signal)

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

14

Auto RF

- **Prescan** is the process of preparing the scanner for a specific patient.
- 1. It sets transmit gain.
 - The flip angle is proportional to the square root of the transmit power.
- 2. It sets the receive gain.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

• 3. It sets the optimum ω_0 .

RF Coils

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

13

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

Coils

• Gradient coils

- Shim coil increase B₀ homogeneities
- Imaging gradient coil intentional perturbation for spatial encoding

• Transmit and/or receive RF coils

- Linear phase or quadrature (receive or transmit)
- Surface or volume (Helmholtz or solenoid)
- Single or phased-array

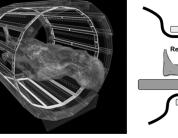
2023/9/25

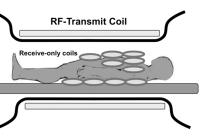
Helmholtz coil

RF Coils

- A transmitter (Tx) coil transmits an RF pulse
- A receiver (Rx) coil receives an RF pulse
- A transceiver (T/R) coil can transmit/receive RF pulses
- Types of coils
 - Body coils: both transmitters and receivers, <u>a part</u> of magnet. Takes most RF transmit missions.
 - Head coils: receivers or transceivers, a helmet-like device
 - · Surface coils: just receivers, imaging joints/body

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.


2023/9/25


18

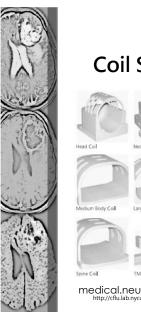
Primary RF transceiver

- The closet component to the magnet bore in a closed-bore MRI.
- Known as the body coil.
- Can be used with local receiver.

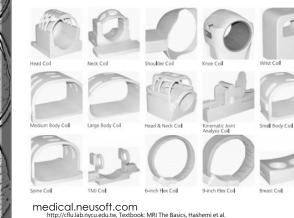
http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

19


Head Coils

- Saddle shape, or birdcage type configuration.
- Can be multichannel coil (which are generally receivers only)



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

Coil Shapes

2023/9/25

21

Volume coils

- Generally used to accommodate a "volume" of tissue
 - Body coil (saddle configuration)
 - Birdcage coil (head coils)
 - Solenoid coils (tube shaped)

Higher magnetic homogeneity

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

22

Surface (or local) coils

• Generally placed on the surface

- linear coils (simple surface coil or local coil configuration)
- quadrature coils (with coils (or electronics) configured perpendicular)
- Helmholtz pair (two coils combined with B1 fields in the same direction)
- · Maxwell pair (two coils combined with B1 fields in the opposite direction
- phased array (multiple coils elements and multiple receivers)
- Parallel array (multiple elements, multiple receivers for parallel imaging).

Higher signal-to-noise ratio (SNR)

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

23

2023/9/25

Linear vs. Quadrature Polarized

- Linear polarized (LP)
- Quadrature (Circular) polarized (CP)
 - Has higher SNR!

24

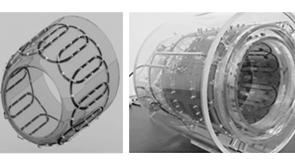
http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

Array Coils - Phased and Parallel

- Array coil systems are collections of small surface coils.
- Small-diameter surface coils near the patient have high sensitivity but limited anatomical coverage.
- By combining multiple small coils into large arrays \rightarrow high signal-to-noise and large fields of view.

Phased Array (LP Overlapping


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

http://mri-q.com/array-coils.html 2023/9/25 25

Quadrature-phased array coils

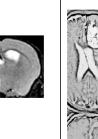
• Multiple elements of coils, larger FOV and better SNR

http://nri.gachon.ac.kr/b_07_e.html 2023/9/25

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

26

Advantages of coil types

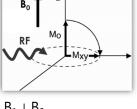

Can increase/achieve...

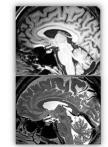
	Array coils	Volume coils
SNR	higher	higher
Magnetic homogeneity		higher
FOV	larger	

- Generally speaking, the smaller the coil the better the SNR and the more coils used the better the SNR.
- The smaller the coil the smaller chance to produce aliasing artifacts.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

27




Procedure of MRI

- Alignment (magnetization) B₀
- Precession $\omega_0 = \gamma B_0$
- **E** Resonance (given B₁ by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$ • The most effective resonance is produced when $\omega_0 = \omega_2$

☐ MR signal (EMF, electromotive force)

- Imaging (Pulse sequencing)
- Image Contrast: Relaxation time
- Spatial localization: Spatial Encoding

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25

THE END

alvin4016@nycu.edu.tw

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/9/25