

磁振影像學MRI ^{重複時間與回波時間} TR & TE

盧家鋒 副教授

國立陽明交通大學 生物醫學影像暨放射科學系 alvin4016@nycu.edu.tw

Procedure of MRI

- \square Alignment (magnetization) B_0
- $\square Precession \omega_0 = \gamma B_0$
- Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$ • The most effective resonance is produced when $\omega_0 = \omega_2$

MR signal (EMF, relaxation time)

- □ Imaging (Pulse sequencing)
- Tissue Contrast: Image weighting
- Spatial localization: Spatial Encoding

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

本週課程內容 <u>http://cflu.lab.nycu.edu.tw</u>

- ・重複時間與回波時間(TR & TE)
- ・TR&TE綜合效應(T1/T2權重)

MRI The Basics (3rd edition)

- Chapter 5: TR, TE, and Tissue Contrast
- MRI in Practice, (4th edition)
 Chapter 2: Image Weighting and Contrast

重複時間與回波時間TR, TE

Time of Repetition (TR) & Time of Echo (TE) Repetition Time (TR) & Echo Time (TE)

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

Received Signal: Free Induction Decay

- The oscillating, decaying signal is called an FID.
- $M_{xy}(t) = M_0 e^{-t/T2^*}(\cos \omega_0 t)$

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

TR (Repetition Time)

- To spatially encode the signal and to increase the signal-tonoise ratio, we have to apply the RF pulse *multiple times* while varying the gradients.
- The time interval between RF pulses is called TR.

T1 Recovery During Successive 90° Pulses

- $M_z(TR) = M_0(1 e^{-TR/T1})$
 - If TR $\rightarrow \infty$, M_z(TR) = M₀
 - Otherwise, $M_z(TR) < M_0$

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

Tissue Contrast (T1 weighting)

- If tissue A has a longer T1 than tissue B, it takes longer to recover $\rm M_{z^{\rm .}}$
- Shorter TR (TR₁) offers better T1 tissue contrast (difference) between tissues A and B.
- Longer TR reduces the T1 weighting(contrast).

Tissue Contrast (T1 weighting)

- Longer TR reduces the T1 weighting(contrast).
- We can certainly minimize the T1 effect with a TR of 2000 to 3000 msec.
- In general, if TR is 4 to 5 times T1, then the T1 effect becomes negligible.
- Ideally, we use TR≒T1 for T1-weighted imaging.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al

2023/10/15

10

TE (Time to Echo or Echo Delay Time)

- We wait a short period of time (TE) after RF pulse and then make the measurement.
- The T2* decay curve (FID) starts out at the value of $M_0(1-e^{-TR/T1})$ on the T1 recovery curve and then decays very quickly.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

11

Tissue Contrast (T2* weighting)

- If tissue A has a longer T2* than tissue B, it takes longer to decay $M_{xy^{\ast}}$
- Longer TE (TE₂) offers better T2* tissue contrast (difference) between tissues A and B.
- Shorter TE reduces the T2* weighting(contrast).

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

FID During Successive 90° Pulses

• The FID signal (the voltage of EMF) would be proportional to

 $M_0(1-e^{-TR/T1}) e^{-TE/T2*}$

TR&TE綜合效應(T1/T2權重)

Dummy Scans

- Each dummy scan contains all of the RF pulses, delays and gradients used in the pulse program.
- But the receiver is not turned on to collect data.
- To ensure that the spin system is in a steady state.

T1, T2 ⇔ TR, TE

- T1 and T2 are inherent properties of the tissue and therefore fixed.
- TR and TE can be controlled and adjusted by the operator.
- By appropriate setting of TR and TE, we can put more "weight" on T1 or T2.

T1 or T2 Weighting

15

Combination of TR and TE

- Don't forget that the FID is originated from $M_{xv^{\!\!\!-}}$

The seal the

Exercise 5-1

 (a) For a TR = 2000 msec, find the relative signal intensities for WM and CSF (i.e., points A and B on the graph).

> WM: 100(1-e^{-2000/500}) =100(1-0.018) = 98.2 CSF: 100(1-e^{-2000/2000}) =100(1-0.368) = 63.2

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15 18

Exercise 5-1

• (b) Calculate the crossover TE where WM and CSF have identical T2 weighting (point C). $98.2(e^{-TE/100})=63.2(e^{-TE/200})$ $\frac{98.3}{(-TE)}=\frac{e^{-TE/200}}{(-TE/200)}$

 $\frac{1}{63.2} = \frac{1}{e^{-TE/100}}$ ln(1.55) = (-TE/200)-(-TE/100) 0.4407=TE/200 TE=88.14

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15 19

Exercise 5-1

- (c) Now, calculate the signal ratio of CSF/WM for TE = 25 (first echo) and TE = 100 msec (second echo).
- WM: $100(1-e^{-2000/500})(e^{-25/100})$ = 98.2 x 0.78 = 76.6 CSF: $100(1-e^{-2000/2000})(e^{-25/200})$ = 63.2 x 0.88 = 55.6 CSF/WM = 0.72

WM: $100(1 - e^{-2000/500})(e^{-100/100})$ = $98.2 \times 0.37 = 36.3$ CSF: $100(1 - e^{-2000/2000})(e^{-100/200})$ = $63.2 \times 0.61 = 38.6$ CSF/WM = 1.06

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

T1/T2/PD weighted Images T1W T2W

CSF > edema > GM > WM

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

23

PDW

Adjust T1 and T2 weighting

T2: H₂O > Fat > Solid tissue N(H): $H_2O > Fat > Solid tissue$

2023/10/15

Differentiate abnormality

• Adjust T1/T2 weighting to enhance abnormalities.

Intracranial Hemorrhage on MRI

Staging	Time	Component	T1W	T2W
Hyperacute	1 day			
Acute	1-3 days	oxyhemoglobin	hypointense	hyperintens
Subacute _ early	3-7 days	deoxyhemoglobin	isointense	hypointense
Subacute _ late	1-3 weeks	methemoglobin(intracellular)	hyperintense	inner :hypointens outer : hyperintens
Chronic_ early	3weeks - months	methemoglobin(extracelluar)	hyperintense	hyperintens
Chronic_late	months - years	hemochrome	hypointense	hyperintens or isointens
Remote	months - years	hemosiderin/ferritin	hypointense	hyperintens

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

26

Procedure of MRI

Alignment (magnetization) B₀

- Precession $\omega_0 = \gamma B_0$
- Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$ • The most effective resonance is produced when $\omega_0 = \omega_2$
- MR signal (EMF, relaxation time)

□ Imaging (Pulse sequencing)

- Tissue Contrast: Image weighting
- Spatial localization: Spatial Encoding

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

B₀ Mz RF Mo Mxy

2023/10/15

THE END

alvin4016@nycu.edu.tw

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

Stage	Time	Hemoglobin		Т1				
Hyperacute	< 24 hours	Oxyhemoglobin	M _Q	Iso				
Acute	1 – 3 days	Deoxyhemoglobin	°11.	Iso				
Early Subacute	3 – 7 days	Methemoglobin in RB	Cs 🔗	Hyper				
Late Subacute	> 7 days	Methemoglobin Free	et.	Hyper				
Chronic	> 14 days	Hemosiderin	Noc.	Iso, Hypo				
			°IL.					
			70	*				

Intracranial Hemorrhage on MRI

http://emedicine.medscape.com/article/344973-overview http://radiologymri.blogspot.tw/2010/12/intracranial-hemorrhage-on-mri.html

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/10/15

Iso, Нуро Нуро

Т2 Hyper Нуро Нуро

Hyper