

### 磁振影像學MRI <sup>資料空間(K space)</sup>

盧家鋒 副教授

國立陽明交通大學 生物醫學影像暨放射科學系 alvin4016@nycu.edu.tw



### Procedure of MRI

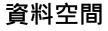
- $\square$  Alignment (magnetization)  $B_0$
- $\square Precession \omega_0 = \gamma B_0$
- Resonance (given  $B_1$  by RF with  $\omega_2$ )  $\omega_1 = \gamma B_1$ ,  $B_1 \perp B_0$ • The most effective resonance is produced when  $\omega_0 = \omega_2$

MR signal (EMF, relaxation time )

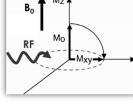
- Imaging (Pulse sequencing)
- Tissue Contrast: Image weighting
- Spatial localization: Slice selection & Spatial Encoding
- Data space

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/11/12




・資料空間 (K space)


MRI The Basics (3rd edition)

- Chapter 13: Data Space
- MRI in Practice, (4th edition)
  - Chapter 3: Encoding and image formation



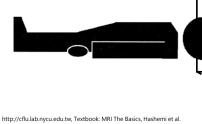


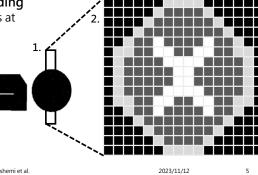
Data space/ K space





2023/11/12


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.


2023/11/12



### Image Construction

- 1. Slice selection
- (only excite spins on a specific slice location)
- 2. In-plane spatial encoding (differentiate spin signals at different locations)

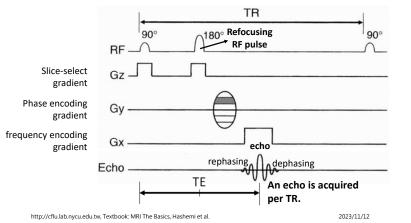




### **In-plane Spatial Encoding**

- Extract the spatial information regarding each slice
  - Frequency encoding or readout gradient
    - Usually apply to the long axis of image
  - Phase encoding gradient
    - Usually apply to the short axis of image or less motion direction

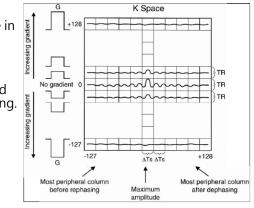





http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/11/12




### Spin-echo pulse sequence diagram





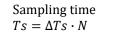
# **Properties of K-Space**

- Each of the signals has its maximum signal amplitude in the center column.
- The maximum amplitude occurs in the center row because this line is obtained without additional dephasing.

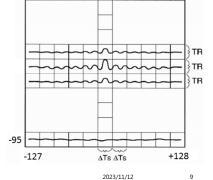


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/11/12

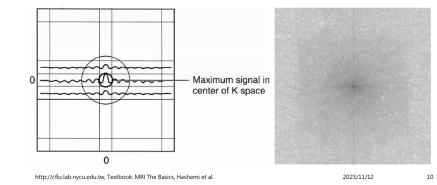



# K Space


• K space is a digitized (sampled) version of the data space.

+96

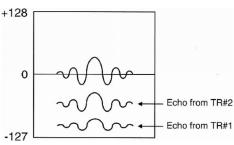
- A 192 x 256 k-space matrix
- The first number refers to the number of phase encoding steps.
- The second number represents the different number of frequencies we used.




http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.



# **Properties of K Space**


• The center point of the data space contains maximum amplitude, i.e., maximum SNR.



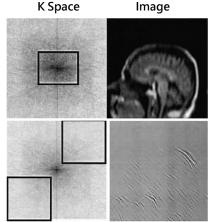


# **Properties of K space**

- Each slice has its own data space.
- Each of received signals (echos) with different phase-encoding gradient fills one line in a set of rows referred to as the data space.
- Each signal in each row of the data space is the sum of all the signals from individual pixels in the slice.
- The center of the data space does not represent the center of image.



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.


2023/11/12 11



# Image of K-Space

### Image

- The center of k-space contributes to the primary information of image.
- The periphery of k-space provides information regarding fitness of the image and clarity at sharp interfaces

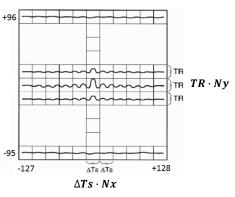


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

12

2023/11/12




# Space Reconstructed Image Figure Figure

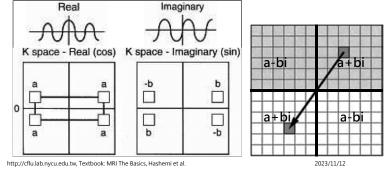
age

15

### **Motion Artifacts**

- It takes much more longer to gather the signal in the phase-encoding direction than in the frequencyencoding direction.
- Motion artifacts propagates along the phase-encoding direction.




http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/11/12 14



### K space symmetry

- Conjugate (Hermitian) Symmetry
- We preliminarily decompose the signal into its real and imaginary components → a real and an imaginary k space.





### Magnitude and Phase Image

- Magnitude (modulus) image
  - Magnitude =  $\sqrt{a^2 + b^2}$
  - It is what we commonly used in MR imaging.
- Phase (angle) image
  - $tan\theta = b/a$
  - It is used in cases in which the direction is important.
  - ex: phase contrast MR angiography susceptibility weighted imaging

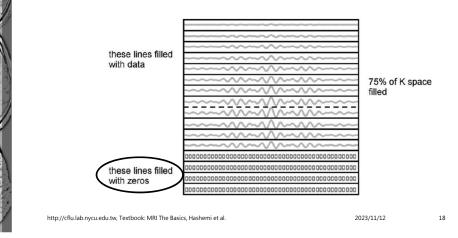
http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/11/12

16



### Half-Fourier Technique

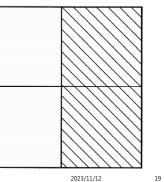

- We acquire the data from the upper half of k-space and construct the lower part mathematically, thus reducing the scan time.
- The trade-off is a reduced SNR by a factor of  $\sqrt{2}$ .
- Overscanning: we sample half of the phase-encoding steps plus a few lines below the 0 line to compensate the phase errors.

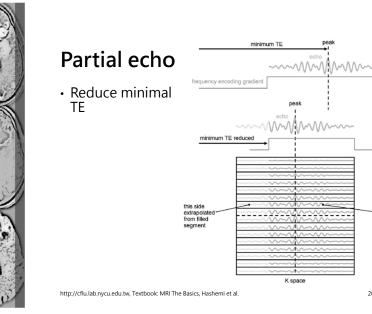
http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/11/12

17

# 75% K space filling



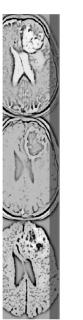




# Fractional (Partial) Echo

- Only a half of the echo is sampled, and another half is constructed based on the acquired half.
- It allows TE to be shorter.
- The dephasing in the frequency direction is reduced.
- Give better SNR at a given TE when a smaller FOV or thinner slices are selected.
- Gradient echo sequences (FLASH, Fast SPGR)

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.






2023/11/12

20

this side

lled wit



# Signal-to-Noise Ratio (SNR)

- SNR  $\propto$  (pixel volume)  $\sqrt{\frac{Ny \times NEX}{BW}}$ 
  - BW (receiver bandwidth) =  $1/\Delta Ts$
  - Ny is the number of phase-encoding steps
  - NEX is the number of times we repeat the whole sequence (number of excitations)
  - Pixel volume ↑, spatial resolution ↓
  - Ny ↑, spatial resolution ↑, scanning time ↑
  - NEX ↑, scanning time ↑
  - BW  $\downarrow$ ,  $\Delta$ Ts  $\uparrow$ , Ts  $\uparrow$ , TE  $\uparrow$ , T2W  $\uparrow$ , # of slice  $\downarrow$

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

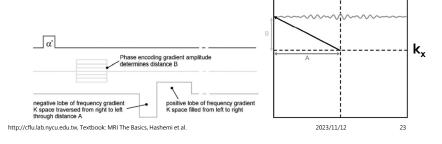
2023/11/12 21

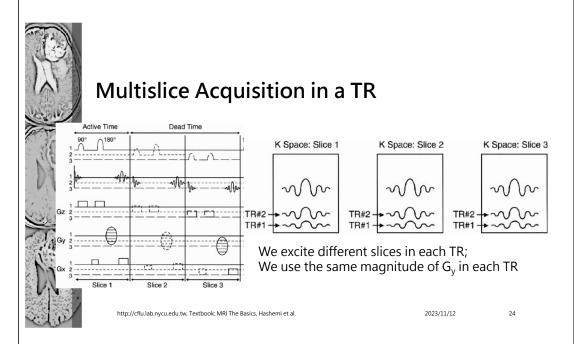


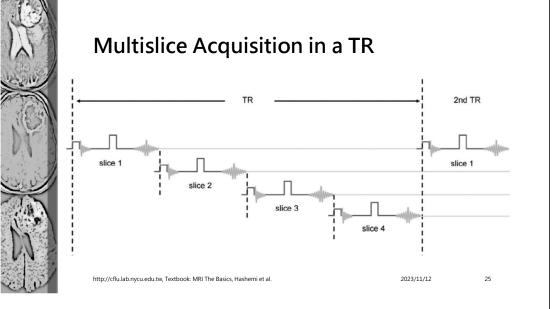
### **Acquisition Time**

- The acquisition time depends on
  - TR (the time to do one line of the data space)
  - Ny (the number of phase-encoding steps)
  - NEX (the number of times we repeat the whole sequence to increase SNR)
- acquisition time  $\propto TR \cdot Ny \cdot NEX$

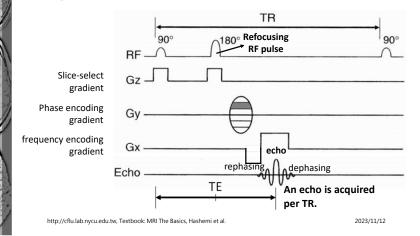
http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.


2023/11/12


22




### How gradients transverse K space


- A negative lobe with ½ area of the subsequent positive lobe is given for the frequency encoding.
- Positive phase-encoding gradient  $\rightarrow + k_y$
- Positive frequency-encoding gradient  $\rightarrow$  +k<sub>x</sub>







### Spin-echo pulse sequence diagram



### **Procedure of MRI**

Alignment (magnetization) B<sub>0</sub>

- Precession  $\omega_0 = \gamma B_0$
- Resonance (given  $B_1$  by RF with  $\omega_2$ )  $\omega_1 = \gamma B_1$ ,  $B_1 \perp B_0$ • The most effective resonance is produced when  $\omega_0 = \omega_2$
- MR signal (EMF, relaxation time )

### ☐ Imaging (Pulse sequencing)

- Tissue Contrast: Image weighting
- Spatial localization: Slice selection & Spatial Encoding
- Data space/K space

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/11/12

Bo



alvin4016@nycu.edu.tw

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

28

26