

磁振影像學MRI 資料空間(K space)

盧家鋒 教授

國立陽明交通大學
生物醫學影像暨放射科學系
alvin4016@nycu.edu.tw

Procedure of MRI

- Alignment (magnetization) B_0
- Precession $\omega_0 = \gamma B_0$
- Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$
 - The most effective resonance is produced when $\omega_0 = \omega_2$
- MR signal (EMF, relaxation time)
- Imaging (Pulse sequencing)
- Tissue Contrast: Image weighting
- Spatial localization: Slice selection & Spatial Encoding
- Data space

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

2

本週課程內容 <http://cflu.lab.nycu.edu.tw>

- 資料空間 (K space)

- MRI The Basics (3rd edition)
 - Chapter 13: Data Space
- MRI in Practice, (4th edition)
 - Chapter 3: Encoding and image formation

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

3

資料空間

Data space/ K space

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

4

Image Construction

1. Slice selection

(only excite spins on a specific slice location)

2. In-plane spatial encoding

(differentiate spin signals at different locations)

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

5

Gradients

- An MR image = slice selection + in-plane spatial encoding
- A gradient is simply a magnetic field that changes from point to point – usually in a *linear* fashion.
 - The slice-select gradient
 - The readout or frequency-encoding gradient
 - The phase-encoding gradient

<https://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

6

Pulse sequence diagram

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

7

Properties of K-Space

- Each of the signals has its maximum signal amplitude in the center column.
- The maximum amplitude occurs in the center row because this line is obtained without additional dephasing.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

8

K Space

- K space is a digitized (sampled) version of the data space.
- A 192×256 k-space matrix
 - The first number refers to the number of phase encoding steps.
 - The second number represents the different number of frequencies we used.

$$\text{Sampling time } Ts = \Delta Ts \cdot N$$

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

9

Properties of K Space

- The center point of the data space contains maximum amplitude, i.e., maximum SNR.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

10

Properties of K space

- Each slice has its own data space.
- Each of received signals (echos) with different phase-encoding gradient fills one line in a set of rows referred to as the data space.
- Each signal in each row of the data space is the sum of all the signals from individual pixels in the slice.
- The center of the data space does not represent the center of image.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

11

Image of K-Space

- The center of k-space contributes to the primary information of image.
- The periphery of k-space provides information regarding fitness of the image and clarity at sharp interfaces

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

12

Image of K-Space

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

13

Motion Artifacts

- It takes much more longer to gather the signal in the phase-encoding direction than in the frequency-encoding direction.
- Motion artifacts propagates along the phase-encoding direction.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

14

K space symmetry

- Conjugate (Hermitian) Symmetry
- We preliminarily decompose the signal into its real and imaginary components → a real and an imaginary k space.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

15

Magnitude and Phase Image

- Magnitude (modulus) image
 - $Magnitude = \sqrt{a^2 + b^2}$
 - It is what we commonly used in MR imaging.
- Phase (angle) image
 - $\tan\theta = b/a$
 - It is used in cases in which the direction is important.
 - ex: phase contrast MR angiography
susceptibility weighted imaging

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

16

Half-Fourier Technique

- We acquire the data from the upper half of k-space and construct the lower part mathematically, thus reducing the scan time.
- The trade-off is a reduced SNR by a factor of $\sqrt{2}$.
- Overscanning: we sample half of the phase-encoding steps plus a few lines below the 0 line to compensate the phase errors.

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

17

75% K space filling

these lines filled with data

75% of K space filled

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

18

Fractional (Partial) Echo

- Only a half of the echo is sampled, and another half is constructed based on the acquired half.
- It allows TE to be shorter.
- The dephasing in the frequency direction is reduced.
- Give better SNR at a given TE when a smaller FOV or thinner slices are selected.
- Gradient echo sequences (FLASH, Fast SPGR)

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

19

Partial echo

- Reduce minimal TE

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

20

Signal-to-Noise Ratio (SNR)

- $\text{SNR} \propto (\text{pixel volume}) \sqrt{\frac{Ny \times NEX}{BW}}$
 - BW (receiver bandwidth) = $1/\Delta Ts$
 - Ny is the number of phase-encoding steps
 - NEX is the number of times we repeat the whole sequence (number of excitations)
 - Pixel volume \uparrow , spatial resolution \downarrow
 - Ny \uparrow , spatial resolution \uparrow , scanning time \uparrow
 - NEX \uparrow , scanning time \uparrow
 - BW \downarrow , $\Delta Ts \uparrow$, Ts \uparrow , TE \uparrow , T2W \uparrow , # of slice \downarrow

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

21

Acquisition Time

- The acquisition time depends on
 - TR (the time to do one line of the data space)
 - Ny (the number of phase-encoding steps)
 - NEX (the number of times we repeat the whole sequence to increase SNR)
- $\text{acquisition time} \propto TR \cdot Ny \cdot NEX$

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

22

How gradients transverse K space

- A negative lobe with $\frac{1}{2}$ area of the subsequent positive lobe is given for the frequency encoding.
- Positive phase-encoding gradient $\rightarrow +k_y$
- Positive frequency-encoding gradient $\rightarrow +k_x$

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

23

Multislice Acquisition in a TR

We excite different slices in each TR;
We use the same magnitude of G in each TR

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

24

Multislice Acquisition in a TR

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

25

Pulse sequence diagram

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

26

Procedure of MRI

- Alignment (magnetization) B_0
- Precession $\omega_0 = \gamma B_0$
- Resonance (given B_1 by RF with ω_2) $\omega_1 = \gamma B_1$, $B_1 \perp B_0$
 - The most effective resonance is produced when $\omega_0 = \omega_2$
- MR signal (EMF, relaxation time)
- Imaging (Pulse sequencing)
 - Tissue Contrast: Image weighting
 - Spatial localization: Slice selection & Spatial Encoding
 - Data space/K space

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

27

THE END

alvin4016@nycu.edu.tw

<http://cflu.lab.nycu.edu.tw>, Textbook: MRI The Basics, Hashemi et al.

2025/10/20

28