

#### 磁振影像學MRI Echo Planar Imaging

盧家鋒 副教授

國立陽明交通大學 生物醫學影像暨放射科學系 alvin4016@nycu.edu.tw



#### Procedure of MRI

- $\square$  Alignment (magnetization)  $B_0$
- $\square Precession \omega_0 = \gamma B_0$
- Resonance (given  $B_1$  by RF with  $\omega_2$ )  $\omega_1 = \gamma B_1$ ,  $B_1 \perp B_0$ • The most effective resonance is produced when  $\omega_0 = \omega_2$

MR signal (EMF, relaxation time )

- □ Imaging (Pulse sequencing: SE, GRE, EPI)
- Tissue Contrast: Image weighting
- Spatial localization: Slice selection & Spatial Encoding
- Data space/K space

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al

2023/12/10



## 本週課程內容 <u>http://cflu.lab.nycu.edu.tw</u>

·回音平面造影

• MRI The Basics (3rd edition)

- Chapter 22: Echo Planar Imaging
- MRI in Practice, (4th edition)
  Chapter 5: Pulse sequences

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.





**Echo Planar Imaging** 

2023/12/10

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10





#### Echo Planar Imaging, EPI

• EPI: the fastest MRI technique

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

- Complete k-space filling in a TR (during one T2\* or T2 decay)
- Applications
  - Rapid acquisition for functional imaging
  - Diffusion tensor imaging, perfusion imaging, functional MRI



#### Hardware requirements in EPI

- High performance gradients
  - Rapid on/off switching of the gradients
  - Gradient strength of 20~100 mT/m
  - Gradient rise time of less than 300 usec
  - $\rightarrow$  High slew rate (G<sub>max</sub>/t<sub>R</sub>)
- Fast computers
  - Fast digital manipulations and signal processing
- Fast-sampling ADC

• 
$$\frac{T_s}{Nx} = \frac{1}{BW}$$
,  $T_s \downarrow \rightarrow BW \uparrow$  (in MHz)  $\rightarrow$  SNR

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10



# **Types of EPI**

- Single-shot EPI
  - Complete all lines in k-space after a single RF excitation (shot).
- multi-shot EPI
- Constant phase encoding
- blipped phase encoding





- All the lines in k-space are filled by multiple gradient reversals, producing multiple gradient echoes in a single acquisition.
- Readout (frequency-encoding) gradient
  - reversed rapidly from maximum positive to negative Ny/2 times

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10



#### Single-shot EPI

• Each lobe of the readout gradient above or below the baseline corresponds to a separate  $k_v$  line in k-space.



### Single-shot EPI

• The phase-encode gradient is subsequently applied briefly during the time when the readout gradient was zero (200 µsec).





#### Single-shot EPI

- Any phase error tends to propagate through the entire k-space.
- one of the technical problems of single-shot EPI is magnetic susceptibility artifacts, particularly at air/tissue interfaces around the paranasal sinuses.
- · chemical shift artifact in EPI is along the phaseencode axis.







An interleaved coverage of k-space



 $G_{v}$  and  $G_{v}$ )

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10

www.humanconnectome.ora



#### **Contrast in EPI**

- Contrast in EPI depends on the "root" pulsing sequence
- SE-EPI (90°-180°-EPI)
- GRE-EPI (α°-EPI)
- IR-EPI (180°-90°-180°-EPI)
  - inversion-recovery (IR)



#### SE-EPI (90°-180°-EPI)

- Eliminate  $\Delta B_{ext}$
- T1 and T2 weighting



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10

16

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.



#### GRE-EPI ( $\alpha^{o}$ -EPI)

- T2\* weighting (lack of 180° pulse)
- Faster imaging speed
- Dynamic imaging
  - Perfusion imaging
  - cardiac cine imaging



- Heavy T1 weighting
- Suppression of tissue signal



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10

18



# Artifacts in EPI



Signal Dropout

Ghosting

(eddy current artifact)







http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10

Chemical shift

2023/12/10

Distortion

17

#### **Actively Shielded Gradients**

- An additional set of nested coils placed between gradient coils and magnet.
- Opposing currents driven through shield coils minimize stray gradient fields.



Design using actively shielded gradients. The gradient shields are slightly larger in diameter than the primary gradient coils and generate a counter magnetic field to reduce eddy currents induced in the magnet structure.

https://mriquestions.com/active-shielded-gradients.html http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10





#### Advantages of EPI

- Scan time is approximately 100 msec or less (32~50 msec).
- · Cardiac and respiratory motion won't pose problems.
- PD, T1, and T2 weighted images free of motion artifacts can be achieved.
- It allows the functional studies rather than the mere depiction of anatomy.
- Resolution can be improved due to fast scanning speed.



21

2023/12/10



#### **Disadvantages of EPI**

- Fat suppression with presaturation techniques is always required (to cancel fat-water chemical shift artifacts).
- Rapid on/off switching of the gradients  $\rightarrow$  possible "electric shock" in the subject
- Potential for phase error (less effect for multi-shot EPI)
- Intrinsic non-uniformities in B0 and susceptibility effects (less effect for multi-shot EPI)

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10

22



#### Comparisons

#### Table 5.3 Single and multi-shot methods.

|        | Sequence      | Readout     | Time        |
|--------|---------------|-------------|-------------|
| FSE    | 90/180        | multiple SE | min/sec     |
| GRASE  | 90/180        | GE          | min/sec     |
| SE-EPI | 90/180        | GE          | sec/sub sec |
| GE-EPI | variable flip | GE          | sec/sub sec |
| IR-EPI | 180/90/180    | GE          | sec/sub sec |

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

23



### Sequence list

|         | Spin echo                                                                                                       | SE              | SE                      | SE                   |
|---------|-----------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|----------------------|
|         | Fast spin echo                                                                                                  | FSE             | TSE                     | TSE                  |
|         | Inversion recovery                                                                                              | IR              | IR                      | IR                   |
|         | Short tau inversion recovery                                                                                    | STIR            | STIR                    | STIR                 |
|         | Fluid attenuated inversion<br>recovery                                                                          | FLAIR           | FLAIR                   | FLAIR                |
|         | Coherent gradient echo                                                                                          | GRASS           | FFE                     | FISP                 |
|         | Incoherent gradient echo                                                                                        | SPGR            | T1FFE                   | FLASH                |
|         | Balanced gradient echo                                                                                          | FIESTA          | BFFE                    | True FISP            |
|         | Steady state free<br>precession                                                                                 | SSFP            | T2 FFE                  | PSIF                 |
|         | Fast gradient echo                                                                                              | Fast GRASS/SPGR | TFE                     | Turbo FLASH          |
|         | Echo planar                                                                                                     | EPI             | EPI                     | EPI                  |
|         | Parallel imaging                                                                                                | ASSET           | SENSE                   | IPAT                 |
|         | Spatial pre-saturation                                                                                          | SAT             | REST                    | SAT                  |
|         | Gradient moment<br>rephasing                                                                                    | Flow comp       | Flow comp               | GMR                  |
|         | Signal averaging                                                                                                | NEX             | NSA                     | AC                   |
|         | Anti-aliasing                                                                                                   | No phase wrap   | Foldover<br>suppression | Oversampling         |
|         | Rectangular FOV                                                                                                 | Rect FOV        | Rect FOV                | Half Fourier imaging |
|         | Respiratory compensation                                                                                        | Resp comp       | PEAR                    | Resp trigger         |
| rcu.edt | man and the second s |                 |                         |                      |

http://cflu.lab.ny

#### **Sequence Abbreviations**

| AC        | number of acquisitions                      | iPAT        |
|-----------|---------------------------------------------|-------------|
| ASSET     | array spatial and sensitivity encoding      | MP RAGE     |
|           | technique                                   | NEX         |
| DRIVE     | driven equilibrium                          | NSA         |
| FFE       | fast field echo                             | PEAR        |
| FIESTA    | free induction echo stimulated acquisition  | PSIF        |
| FISP      | free induction steady precession            | REST        |
| FLAIR     | fluid attenuated inversion recovery         | RESTORE     |
| FLASH     | fast low angled shot                        | SENSE       |
| Flow comp | flow compensation                           | SPGR        |
| FR-FSE    | fast recovery fast spin echo                | SSFP        |
| FSE       | fast spin echo                              | STIR        |
| GMR       | gradient moment rephasing                   | TFE         |
| GRASS     | gradient recalled acquisition in the steady | TSE         |
|           | state                                       | Turbo FLASH |

FISP

FLAIR

| integrated parallel acquisition technique<br>magnetization prepared rapid gradient echo |
|-----------------------------------------------------------------------------------------|
| number of excitations                                                                   |
| number of signal averages                                                               |
| phase encoding artefact reduction                                                       |
| mirrored FISP                                                                           |
| regional saturation technique                                                           |
| restore turbo spin echo                                                                 |
| sensitivity encoding                                                                    |
| spoiled GRASS                                                                           |
| steady state free precession                                                            |
| short tau inversion recovery                                                            |
| turbo field echo                                                                        |
| turbo spin echo                                                                         |
| magnetization prepared sub second imaging                                               |

Procedure of MRI Alignment (magnetization) B<sub>0</sub>  $\square$  Precession  $\omega_0 = \gamma B_0$ Resonance (given  $B_1$  by RF with  $\omega_2$ )  $\omega_1 = \gamma B_1$ ,  $B_1 \perp B_0$ • The most effective resonance is produced when  $\omega_0 = \omega_2$ MR signal (EMF, relaxation time) Imaging (Pulse sequencing: SE, GRE, EPI) • Tissue Contrast: Image weighting • Spatial localization: Slice selection & Spatial Encoding • Data space/K space 

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.





http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2023/12/10

25



alvin4016@nycu.edu.tw