

# 磁振影像學MRI 磁振假影

#### 本週課程內容 <u>http://cflu.lab.nycu.edu.tw</u>

磁振假影

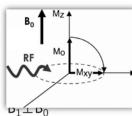
#### • MRI The Basics (3rd edition)

- Chapter 18: Artifacts in MRI
- MRI in Practice, (4th edition)
  - Chapter 7: Artefacts and their compensation



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18


## Procedure of MRI

- Alignment (magnetization) B<sub>0</sub>
- $\square$  Precession  $\omega_0 = \gamma B_0$
- E Resonance (given  $B_1$  by RF with  $\omega_2$ )  $\omega_1 = \gamma B_1$ ,  $\omega_1 \perp \omega_0$ • The most effective resonance is produced when  $\omega_0 = \omega_2$

盧家鋒 副教授

國立陽明交通大學 生物醫學影像暨放射科學系

- MR signal (EMF, relaxation time)
- 🔟 Imaging (Pulse sequencing: SE, GRE, EPI)
- Tissue Contrast: Image weighting
- Spatial localization: Slice selection & Spatial Encoding VI
- Data space/K space
- Tissue Suppression Techniques
- Artifacts in MRI http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.



2022/12/18

# 磁振假影

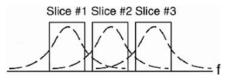
#### Artifacts in MRI

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.



## Hardware-related Artifacts

- Radio frequency (RF)-related artifact
  - Cross-talk
  - Zipper artifacts
- External magnetic field artifacts
  - Magnetic inhomogeneity
- Gradient-related artifacts
  - Eddy currents
  - Nonlinearity
  - Geometric distortion


http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

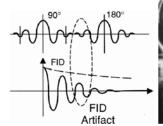
2022/12/18



# **RF-related artifacts: Cross talk**

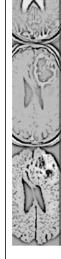
- An imperfect rectangle of the FT of the RF pulse
- Decrease TR due to saturation of protons by the RF for adjacent slices.
- T1 weighting ↑ and SNR↓
- Remedy: interleaving, increase gap, rectangular wave

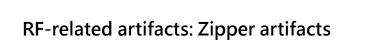



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18




# **RF-related artifacts: Zipper artifacts**


- Along the phase encoding axis at zero frequency
   Cause 1, RF feed-through: excitation RF pulse → receiver coil
- Along the frequency-encoding axis without phase encoded
  - Cause 2, Stimulated echo: imperfect RF pulses of adjacent slices, imperfect 90°-180°-180° pulses
    Cause 3, FID artifact: the overlapping of 180° RF pulse with the FID





Central artifacts





- Remedy to FID artifact:
  - Increase TE (increase the separation between FID and RF pulse)
  - Increase slice thickness (a wide RF BW narrows RF signal in the time domain)
- Remedy to stimulated echo:
  - Use spoiler gradients
  - Adjust the transmitter

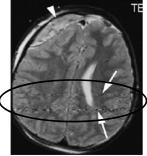


Central artifacts

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/1



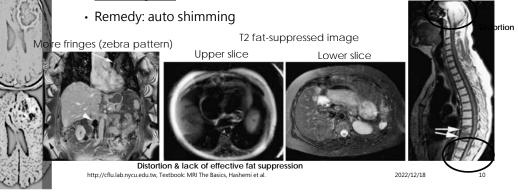

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18



# **RF-related artifacts: Zipper artifacts**

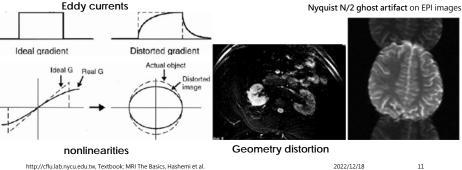
- Unwanted external RF noise (TV, radio station, electronic monitoring equipment)
- Occurs at the specific frequency
- Remedy: improve RF building, shut the door of MR room




http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

## **External magnetic field artifacts**


• Improper shimming, environmental factors, far extremes of short bore magnets





#### Gradient-related artifacts

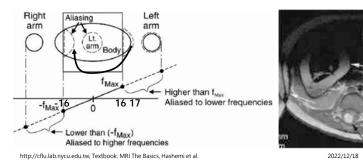
• Eddy currents are generated when the gradients are rapidly switched on and off, resulting in a distortion in the gradient profile.



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.





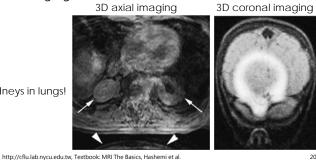

#### Software-related Artifacts

- Image processing artifact
  - Aliasing
  - Chemical shift •
  - Truncation
  - Partial volume



# Image processing Artifacts: aliasing

- Any frequency higher than the maximum frequency allowed by the gradient cannot be detected correctly.
- f(perceived) = f(true)-2f(max)






# Image processing Artifacts: aliasing

- 2D imaging: along frequency-encoding or phase-encoding directions
- 3D imaging: in all three directions

Kidneys in lungs!



2022/12/18

14



# Image processing Artifacts: aliasing

- Remedy
  - Increase FOV (may reduce spatial resolution)
  - Use surface coils that only covers the area within FOV.
  - Frequency or phase oversampling ("No Phase Wrap")
  - Use saturation pulses to saturate the signals outside the FOV.





- The protons from different molecules precess at slightly different frequencies.
- The protons in H<sub>2</sub>O precess slightly faster than those in fat (about 3.4 ppm).
- $\omega_0 = \gamma B_0 = (42.6 \text{ MHz/T})(1.5\text{T}) = 64 \text{ MHz}$
- 64 MHz x 3.4 ppm =  $(64 \times 10^{6} \text{ Hz})(3.4 \times 10^{-6}) \approx 220 \text{ Hz}$
- B<sub>0</sub> ↑, chemical shift ↑

15

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.



#### Image processing Artifacts: chemical shift

- BW = Nx/Ts = 256/(8 ms) = 32 kHz
- BW/pixel = 1/Ts = 125 Hz
- Pixel difference ( $H_2O/fat$ ) = 220 Hz/125Hz = 1.76 pixels
- Fat protons are going to be misregistered from H<sub>2</sub>O by about 2 pixels (in a 1.5 T magnet using a standard 32kHz bandwidth).
- chemical shift(in mm) =  $\frac{3.5 \times 10^{-6} \sqrt{6}}{2}$

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

17

#### Image processing Artifacts: chemical shift · Chemical shift artifact only occurs in the frequency-encoding direction. Bright Dark • A bright band toward the lower frequencies • A dark band toward the higher frequencies Gx

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

18

# Image processing Artifacts: chemical shift

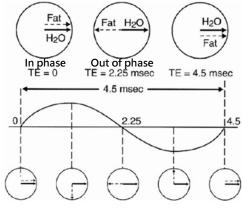
- Remedy:
  - Fat suppression
  - Increase pixel size by keeping FOV the same and decreasing Nx (spatial resolution  $\downarrow$ )
  - · Lower the magnet's field strength (not practical)
  - Increase bandwidth (SNR↓)
  - Use a long TE (less signal from fat)



T2 with/without fat saturation http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

19




# Chemical shift of the second kind

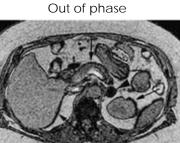
• 220 Hz at 1.5T:

T2 FSE

- Fat and water are in phase every 4.5 msec.
- Only exist in GRE (without 180° rephasing pulse).
- Not only in the frequency-encoding direction



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.


2022/12/18



# Chemical shift of the second kind

Boundary effect (when out of phase)





http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

21

# Image processing Artifacts: Truncation

- Truncation artifacts (Gibbs Phenomenon)
- Occurs at high contrast interfaces
  - Skull/brain, spinal cord/CSF, meniscus/fluid in the knee
- · Due to insufficient samples for the large signal changes
  - Mostly seen in the phase direction (because fewer samples are usually taken)
- Causes alternating bright and dark bands
  - Pseudo syrinx of the spinal cord
  - Pseudo tear of the knee meniscus
- The K-space data is often under-sampled and truncated to shorten the scan time.

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18



# Image processing Artifacts: Truncation

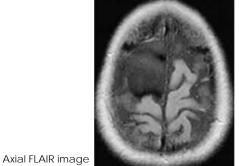
- Remedy:
  - Decrease pixel size (increase phase encoding steps, reduce FOV)
  - Increase sampling time, increase sampling bandwidth





Fat-saturated T2




2022/12/18

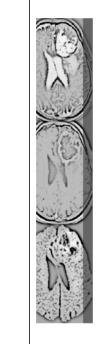
23



#### Image processing Artifacts: Partial volume

Remedy: decrease the slice thickness




-

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.



# Subject-related Artifacts

- Motion artifacts
- Magnetic susceptibility artifacts
  - Diamagnetic, paramagnetic, ferromagnetic
  - Metal



2022/12/18

25

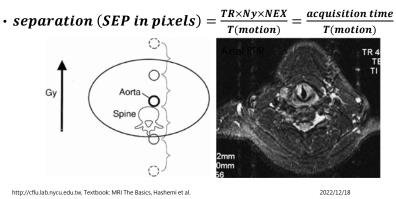
27

# Subject-related Artifacts: Motion

- Random movements, periodic motion (pulsating flow in vessels)
- We only get motion artifacts in the phase-encoding direction (the sampling time for frequency-encoding is short).

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

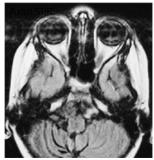

26



# **Periodic Motion**

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

• Ghost artifacts of the vessels are equally separated along phase-encoding direction.

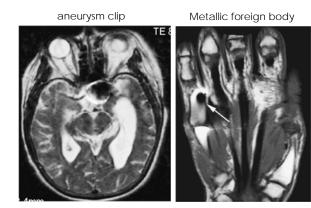





# Motion artifacts

- Remedy for Periodic motion
  - Spatial presaturation pulses to saturate inflowing protons
  - Increase separation between ghosts
  - Swap phase and frequency (only change the direction of artifacts)
  - Use cardiac/respiration gating
  - Use flow compensation
- Remedy for random motion
  - Patient instruction: don't move!
  - Fast scanning techniques
  - Sedation

Random eye movements



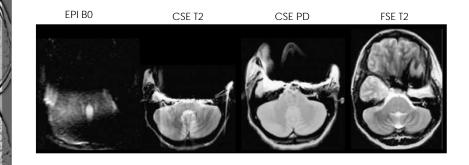

http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18



# Magnetic susceptibility artifacts




http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

29

# Magnetic susceptibility artifacts

• A patient with dental braces



http://cflu.lab.nycu.edu.tw, Textbook: MRI The Basics, Hashemi et al.

2022/12/18

30

- 請完整練習此部分國考題,很多臨床假影影像實例!
- 請閱讀ACR MRI phantom補充教材

# THE END

alvin4016@nycu.edu.tw