

血管攝影與對比劑 A Course of MRI

盧家鋒 助理教授 國立陽明大學 物理治療暨輔助科技學系 <u>alvin4016@ym.edu.tw</u>

FILL ST

本週課程內容-MR Angiography (MRA)

- 非對比劑增強MRA(Unenhanced MRA)
 - Time-of-flight (TOF) angiography
 - Phase-contrast (PC) angiography
- •對比劑增強MRA(Contrast-enhanced MRA)
- 腦血流灌注(Brain MR perfusion imaging)

References

- Magnetic Resonance Angiography: Principles and Applications, Carr et al, 2012 by Springer
- Magnetic Resonance Angiography: Techniques, Indications and Practical Applications, Schneider et al, 2005 by Springer

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

2

非對比劑與對比劑增強MRA

Unenhanced and Contrast-enhanced MRA

Unenhanced MRA

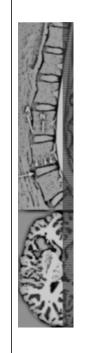
- Rely solely on flow effects (the movement of blood)
- Amplitude effects
 - Blood flowing into or out of a chosen slice has a different longitudinal magnetization compared to stationary spins.
 - Depend on the duration of stay (time-of-flight) in the slice
- Phase effects
 - Blood flowing along the direction of a magnetic field gradient changes its **transverse magnetization** compared to stationary spins.

high flow velocity

http://www.ym.edu.tw/~cflu

Outflow-related signal loss • Washout effect, $v \ge \frac{s}{TE/2} \rightarrow T2$ flow void Now flow velocity slice $\frac{1}{s}$ $90^{\circ} \leftarrow TE/2 \rightarrow 180^{\circ} \leftarrow TE/2 \rightarrow Eche$

Spin-echo sequences


no signa

Blood flowing within the imaging plane are not affected

5

by this phenomenon.

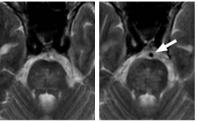
5/7/2014 Lesson 11, Chia-Feng Lu

Outflow-related signal loss

• $v \ge \frac{s}{TE/2} \rightarrow$ flow void

http://www.ym.edu.tw/~cflu

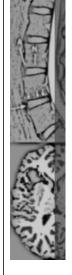
http://www.ym.edu.tw/~cflu


- The intensity of the vascular signal declines with
 - Decreasing slice thickness, s
 - Increasing echo time, TE

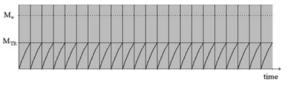
Axial T2W SE image

Basilar artery

Increasing flow velocity, v


5/7/2014 Lesson 11, Chia-Feng Lu

6

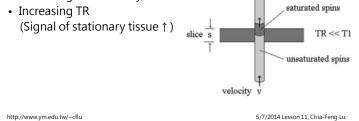

Outflow-related signal loss

- Only observed for SE sequences and is most pronouced on T2-weighted imaging (longer TE).
- The washout effect does not occur in GRE techniques.
 - Only one RF pulse

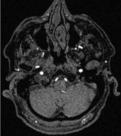
Inflow-related signal enhancement

 With short TR (TR«T1) of GRE sequence, the spin signals can be saturated.

- Spins outside the excited slice are not influenced by the RF pulses, and therefore are fully relaxed.
- Flowing blood gives rise to higher signal intensity relative to that of the saturated spins in the stationary tissue.


http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu


Inflow-related signal enhancement

- $v > \frac{s}{TP} \rightarrow$ flow enhancement
 - Replace the vessel spins by unsaturated spins in the time interval TR
- The signal intensity of flowing blood increases with
 - Decreasing slice thickness, s
 - Increasing flow velocity, v

Inflow-related signal enhancement

- The inflow effect occurs both with SE and GRE sequences.
- However, the competing washout effect in SE tends to overbalance the inflow effect at higher flow velocities, leading to decreased flow signal.
- TOF angiography
 - GRE sequences • Bright-blood images
- Endogenous contrast agenť

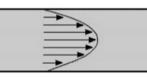
Bright vessels Gray/black background

10

12

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

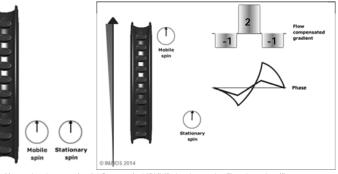

TOF Angiography

- Spoiled GRE sequences
 - No washout phenomenon
 - Short TR (<40 msec) to efficiently saturate stationary tissues
 - Short TE (< 5 msec) to reduce spin dephasing
 - Short acquisition time to acquire 3D datasets
 - Flow conpensation
- TOF techniques can be divided into 3 groups
 - Sequential 2D multi-slice method
 - 3D single-slab method
 - · 3D multi-slab method

Flow compensation gradients

- Laminar flow with a parabolic flow profile
 - An increased velocity from the border towards the center.
 - Intravoxel dephasing of spins with different velocities

• TOF employs additional gradients on the slice-selection and frequency-encoding directions to refocus unwanted phase accumulations.


http://www.ym.edu.tw/~cflu

http://www.ym.edu.tw/~cflu

Flow compensation gradients

• Avoid dephasing in flows at constant velocity

http://www.imaios.com/en/e-Courses/e-MRI/MR-Angiography-Flow-imaging/flow-compensation

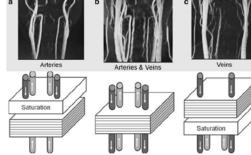
http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

13

Sequential 2D technique

- Larger flip angle (30°~70°)
- Thicker slice thickness (2~3 mm) to achieve better SNR
- Best suited for imaging vessels that are straight and perpendicular to the slices.
 - Carotid arteries or vessels in the lower extremities.
- It is necessary to synchronize the acquisition of data to the cardiac cycle (ECG gating).


http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

Spatial saturation pulse

- Superior saturation pulses are used suppress the signal from veins above the heart, and arteries below the heart
- Inferior saturation pulses are used to suppress the signal from arteries above the heart and veins below the heart

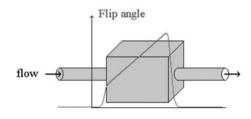
http://www.ym.edu.tw/~cflu

Chia-Feng Lu

15

3D TOF MRA

- Smaller voxels (<1 mm), isotropic voxels, shorter TE, and higher SNR
- Because a slab is imaged, a small flip angle (<30°) must be used so the signal from blood that remains in the slab does not become too saturated.
- A small flip angle also leads to preserve undesirable signal from stationary tissues.


http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

TONE flip angle adjustment

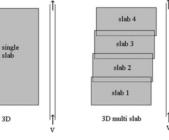
- Tilted, Optimized, None-saturating Excitation (TONE)
- The flip angle is varied linearly in the slice direction, beginning with small values at the entry side and ending with high values at the exit side of the volume.

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu 17

3D TOF MRA

- The extent of saturation depends on the length of time in which the blood stays inside the volume.
 - Slow flow vessels → signals diminish even for a short cover distance
 - Fast flow vessels → signals remain visible for a greater cover distance
- The maximum slab/volume thickness should be kept as small as possible.
 - Just matched to the size of the vessel region of interest
- Larger vessel sections → 3D multi-slab technique

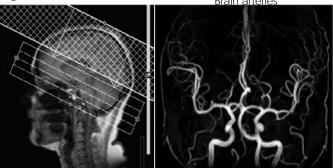

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

3D multi-slab method

- Retains the advantages of 3D TOF and also has reduced saturation effects like 2D TOF
- Multiple overlapping thin slab acquisition (MOTSA) (4~6 cm)
 - 20-30% overlapping
- Longer acquisition time

http://www.ym.edu.tw/~cflu

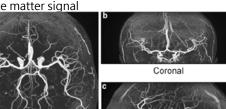

5/7/2014 Lesson 11, Chia-Feng Lu

19

3D multi-slab method

Presaturation slab above the imaging volume suppresses the signal of venous flow.
 Brain arteries

http://www.ym.edu.tw/~cflu


5/7/2014 Lesson 11, Chia-Feng Lu

20

Background-blood contrast

- Magnetization transfer contrast (MTC)
- MTC can further suppress background signal.
 - Reduction of gray and white matter signal
 - by 15-40%
 - But not in blood
- Fat suppression

5/7/2014 Lesson 11, Chia-Feng Lu

Sagitta 21

TOF Angiography

Table 3. Comparison of 2D TOF and 3D TOF angiography

2D TOF	3D TOF	
Strong inflow effect, minimal saturation		
 sensitive even to slow flow (veins) 	More saturation effects	
 sensitive to rather fast flow (arteries) 		
Relatively poor signal-to-noise ratio	High signal-to-noise ratio	
Short scan times	Poor background suppression	
Relatively thick slices		
 suitable for large vessels 	Thin slices, allows isotropic voxels	
 suitable for small vessels 		
Poor in-plane flow sensitivity		
 for straight, unidirectional flow 	Better than 2D TOF for tortuous vessels	
Long echo times	Short echo times, less dephasing	
Step artifacts at the vessel wall	Smoother vessel walls	
http://www.ym.edu.tw/~cflu	5/7/2014 Lesson 11, Chia-Feng Lu	22

5/7/2014 Lesson 11, Chia-Feng Lu

Flow encoding

24

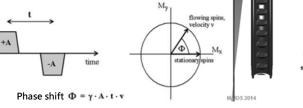
TOF Angiography

- Vein: slow flow
- Artery: fast flow

Table 4. Options to improve TOF angiography

Orientation of slices or volume perpendicular to flow direction 2D for slow flow, 3D for fast flow 3D multi-slab for larger vessel sections Spatial presaturation to isolate arteries and veins Use of minimum TE reduces signal loss due to spin dephasing TONE pulse reduces saturation effects in 3D TOF Magnetization transfer (MTC) and fat suppression improve vessel contrast

Axial


http://www.ym.edu.tw/~cflu

23

Phase effects

- Phase effects concern the transverse magnetization.
- Apply a pair of gradients with identical strength and duration but opposite sign (bipolar flow-encoding gradient).
- Stationary spins \rightarrow zero net phase shift
- Flowing spins → a non-zeros phase shift

http://www.imaios.com/en/e-Courses/e-MRI/MR-Angiography-Flow-imaging/phase-contrast-mra http://www.ym.edu.tw/~cflu 5/7/2014 Lesson 11, Chia-Feng Lu

Magnitude contrast method

- Acquire two datasets
 - Flow-rephased images: flow compensation, bright-blood image
 - Flow-dephased images: strong flow-sensitive bipolar gradients, velocity-dependent phase shifts, dark-blood image.

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

25

Phase contrast method

- Acquire two datasets
 - Flow-rephased images (S1): flow compensation, bright-blood image
 - Flow-dephased images (S2): flow-sensitive bipolar gradients, velocity-dependent phase shifts, dark-blood image.
- The flow-sensitive gradient is weak enough to avoid complete phase dispersion arising from the velocity distribution of the spins.
- Complex subtraction (S1-S2) \rightarrow the difference vector Δ S

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

26

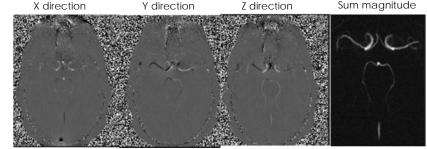
28

Phase contrast method

- A direct quantitative measure of the velocity of the flowing blood
- No restriction on image orientation (not dependent on infow effects)
- Velocity encoding (VENC)
 - The velocities between –VENC and +VENC are encoded by the phase shifts between -180° and +180°.
 - The flow velocity exceeded the VENC value → aliasing
- General velocity
 - Arterial flow 40~60 cm/s
 - Venous flow 20~30 cm/s

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu


27

Phase contrast MRA

Phase-encoded images

Subtraction & Sum magnitude

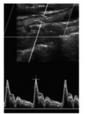
http://www.ym.edu.tw/~cflu

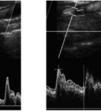
5/7/2014 Lesson 11, Chia-Feng Lu

Phase contrast MRA

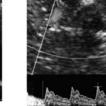
Table 6. Options for improving phase contrast MRA	Table 7. Flow velocities in som (according to Siemens application)	
Adapting flow sensitivity (venc) to maximum flow velocity Encoding different flow velocities (multivenc) or different flow dire Contrast agent improves flow signal 2D acquisition provides one <i>single</i> projection within a short acquis 3D acquisition permits MIP postprocessing ECG triggering can be applied in cases of pulsatile flow Presaturation pulses can separate arteries and veins	Descending aorta	Flow velocity (cm/s) 50 - 100 150 - 500 150 - 200 60 - 80 100 - 500 60 40 - 50 60 - 80 35 - 40 5 - 40 5 - 10
http://www.ym.edu.tw/~cflu	5/7/2014 Lesson 11, Chia-Feng Li	u 29

TOF vs. phase contrast MRA


Table 9. Benefits and limitations of TOF and phase contrast MRA


TOF-MRA Advantages Simple to implement, robust High spatial resolution Shorter acquisition time (in 3D) Disadvantages Reduced sensitivity to slow flow Restrictions to size and orientation of the imaging volume Short T1 tissue may be mistaken for flowing blood		Phase contrast MRA No saturation effects Excellent background suppression Enables quantitative flow measurement Prior knowledge about flow rates required Very long acquisition times for 3D techniques Susceptible to phase errors		
http://www.ym.eo	ju.tw/∼cflu	5/7/2014 Lesson 11, Chia-Feng Lu	30	

Limitations


• Highly sensitive to motion artifacts → ECG gating • Heart beats and breathing

ECA

http://www.ym.edu.tw/~cflu

MCA

ICA

5/7/2014 Lesson 11, Chia-Feng Lu

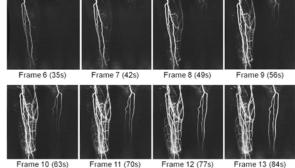
31

ECA: external carotid artery ICA: internal carotid artery

MCA: middle cerebral artery

MCA is less pulsatile.

Contrast-enhanced MRA


- Avoidance of blood signal saturation
- Better turbulent flow imaging
- Injection a contrast material intravenously (IV) to selectively shorten the T1 of the blood → brighter signal in T1W images.
- Gadolinium-chelate (Gd) contrast agents
 - Seven unpaired electrons \rightarrow paramagnetic, shorten T1 and T2
 - Injection rate: 0.5~4.0 ml/s
 - Injection volume: 0.1~0.3 mmol/kg body weight, typically 20~40 ml
 - Computer-controlled power injector
 - Examine the patient's renal function before scanning!

http://www.ym.edu.tw/~cflu

Contrast-enhanced MRA

• 3D, RF-spoiled, fast gradient-echo imaging sequences → T1W images (FSPGR, FLASH, or T1 FFE)

http://www.ym.edu.tw/~cflu

Mask subtraction 5/7/2014 Lesson 11, Chia-Feng Lu

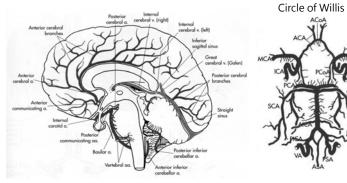
33

35

Applications areas of MRA


Table 8. Application areas of MRA techniques

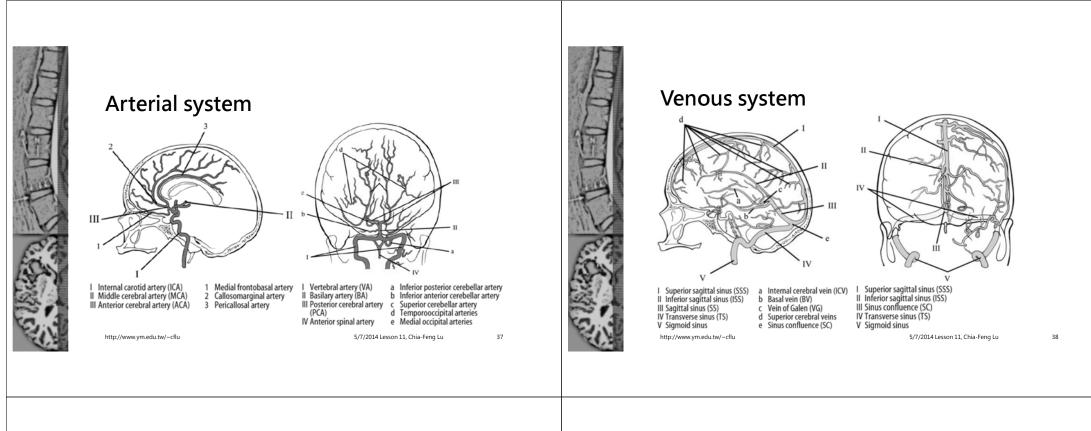
Intracranial:	3D-TOF	2D-TOF	3D-PC	2D-PC	Magnitude contrast	CE MRA
- Arteries	***		*			*
- Veins	*	***	**	*		*
Carotids	**	**				***
Peripheral vessels		**			*	***
*** method of choice; * TOF MRA: Time-of-Flig					g technique, but with sub-op	timal results

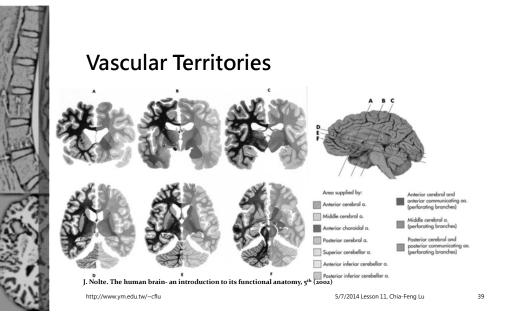

http://www.ym.edu.tw/~cflu

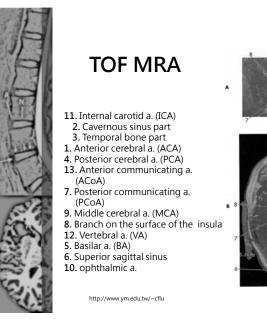
5/7/2014 Lesson 11, Chia-Feng Lu

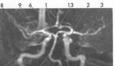
34

Blood supply of the brain

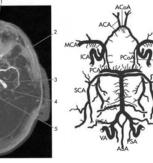

J. Nolte. The human brain- an introduction to its functional anatomy, 5th (2002)


http://www.ym.edu.tw/~cflu


5/7/2014 Lesson 11, Chia-Feng Lu



Brain MR perfusion imaging



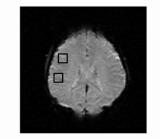
Circle of Willis

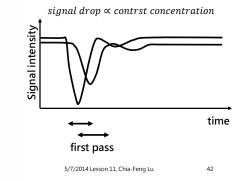
5/7/2014 Lesson 11, Chia-Feng Lu

Brain perfusion imaging

- The information on the capillary microcirculation of tissue
- Quantitative measurements
 - Blood volume
 - Blood flow
 - Temporal data (transit time and time to peak)
- Two major techniques
 - Dynamic-susceptibility-contrast (DSC) MRI
 - Arterial spin labeling (ASL) MRI

http://www.ym.edu.tw/~cflu


5/7/2014 Lesson 11, Chia-Feng Lu


41

DSC MRI

• bolus tracking of Gd-DTPA contrast agent, reduce T2 and T2* relaxation time

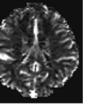
DSC MRI

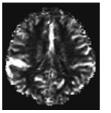
- T2-weigthed SE-EPI: specific to the micro-vascular compartment
- T2*-weighted GRE-EPI: also take into account larger vessels
- Post-preprocessing
 - Extract the first pass signal (gamma-fitting) and remove the recirculation signal
 - Define the arterial input function (AIF)
 - Deconvolution of tissue concentration-time curves by the AIF

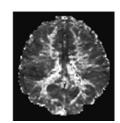
Hemodynamic maps

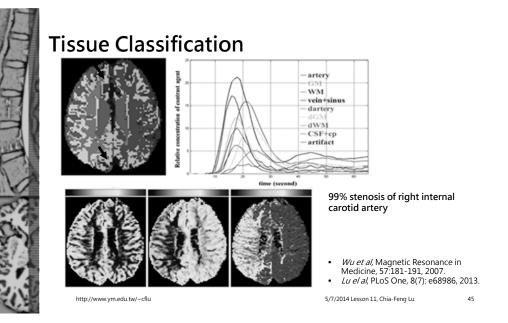
Cerebral blood volume

Cerebral blood flow


Mean transit time


 $\int_{first} c_t(t) dt$ $rCBV = \frac{pass}{pass}$ $\int_{first} c_a(t) dt$


 $C_t(t) = rCBF \cdot Ca(t) \otimes R(t)$


http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

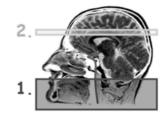
http://www.ym.edu.tw/~cflu

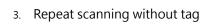
5/7/2014 Lesson 11, Chia-Feng Lu

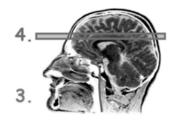
43

HIT V

ASL MRI

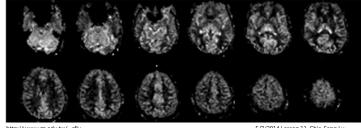

- Arterial spin labeling uses arterial blood water as an endogenous contrast agent.
- Blood is "tagged" or magnetically inverted which changes its magnetic properties and its effect on MR signal.
- Create paramagnetic tracer to suppress MR signal wherever arterial blood is delivered.
- Can be used to quantify CBF (cerebral blood flow) in arterioles and capillaries.


http://www.usc.edu/programs/neuroscience/private/mona_journal_club/David_Clewett_powerpoint.pdf http://www.ym.edu.tw/~cflu 5/7/2014 Lesson 11, Chia-Feng Lu 46


Principles of ASL

- 1. Tag inflowing arterial blood by magnetic inversion
- 2. Acquire the tag image

4. Acquire the control image


$4(control image) - 2(tag image) \propto CBF$

http://www.usc.edu/programs/neuroscience/private/mona_journal_club/David_Clewett_powerpoint.pdf http://www.ym.edu.tw/-cflu 5/7/2014 Lesson 11, Chia-Feng Lu 47

ASL CBF map

- Pulsed Arterial Spin Labeling (PASL)
 - A volume of blood is labeled upstream of the region of interest by a short RF pulse
- Continuous Arterial Spin Labeling (CASL)
 - Increase the delivered RF energy
 - Two sets of transmitter and receiver coils

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu

THE END

alvin4016@ym.edu.tw

http://www.ym.edu.tw/~cflu

5/7/2014 Lesson 11, Chia-Feng Lu