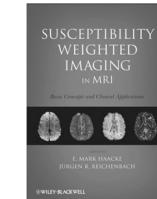


Magnetic Resonance in Medicine Susceptibility Weighted Imaging (SWI)


Chia-Feng Lu (盧家鋒), Ph.D.
Department of Biomedical Imaging and Radiological Sciences, NYCU
alvin4016@nycu.edu.tw

Content <http://cflu.lab.nycu.edu.tw/>

- Susceptibility weighted imaging (SWI) 磁化率權重影像

- Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications
- Haacke et al., Review of SWI, Part 1, AJNR, 30: 19-30, 2009.
- Mittal et al., Review of SWI, Part 2, AJNR, 30: 232-259, 2009.

<http://cflu.lab.nycu.edu.tw>

2024/4/8

2

Intended Learning Outcomes

After this class, you should be able to...

- Describe procedure to obtain susceptibility weighted image (SWI)
- Explain the relation between phase changes and susceptibility
- Interpret the image findings on SWI.

<http://cflu.lab.nycu.edu.tw>

2024/4/8

3

Susceptibility weighted imaging (SWI)

磁化率權重影像

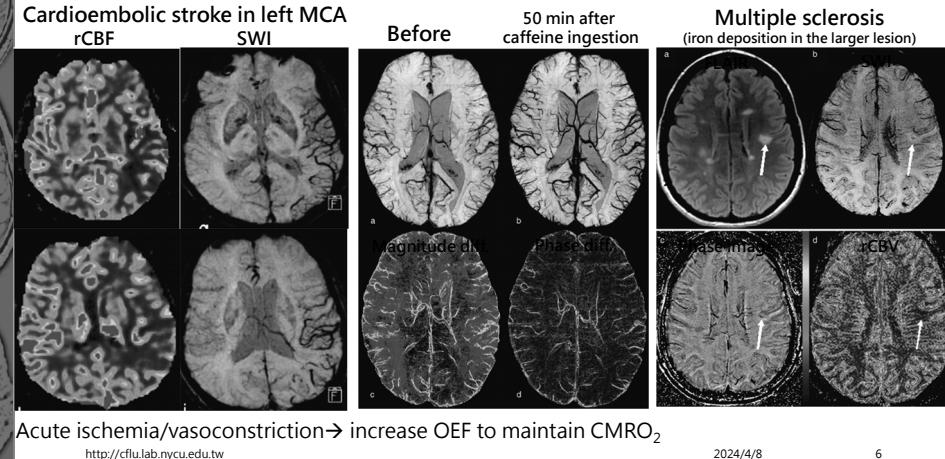
<http://cflu.lab.nycu.edu.tw>

2024/4/8

4

Susceptibility weighted imaging, SWI

- SWI is an MR technique that utilizes the magnetic susceptibility differences
 - Visualize small veins in the brain
 - Microbleed
 - Sensitive to iron & calcification
- Susceptibility differences can be used as a new type of contrast, similar to T1W, T2W, T2*W, and PD.


<http://cflu.lab.nycu.edu.tw>

2024/4/8

5

SWI Examples

Acute ischemia/vasoconstriction → increase OEF to maintain CMRO₂

<http://cflu.lab.nycu.edu.tw>

2024/4/8

6

Clinical Applications of SWI

- SWI offers information about tissues with different susceptibilities from surrounding tissues.
 - deoxygenated blood (去氧血紅素), iron storage (hemosiderin or ferritin), calcium (鈣化)
- Numerous Clinical applications
 - Hemorrhages
 - Cerebrovascular and ischemic brain diseases
 - Traumatic brain injuries
 - Arteriovenous malformations
 - Neurodegenerative diseases
 - Breast microcalcifications

<http://cflu.lab.nycu.edu.tw>

2024/4/8

7

History of SWI

BOLD: Blood Oxygenation Level Dependent

- Originally proposed by Reichenbach et al. as "MR venography" or "BOLD venographic imaging"
 - Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. *Radiology*, 1997.
- Haacke et al. 2004
 - Susceptibility weighted imaging (SWI)

<http://cflu.lab.nycu.edu.tw>

2024/4/8

8

Magnetic Susceptibility

- When an object is placed in an external magnetic field H , magnetization is induced in the object.
- Magnetic susceptibility is the magnetic response of a material when it is placed in a magnetic field.
 $M = \chi H$
 - χ = susceptibility (ppm)
 - M = induced magnetization
 - H = applied field
- If diamagnetic, $\chi < 0$
- If paramagnetic, like deoxygenated blood, $\chi > 0$

Haacke et al., AJNR 2009.

2024/4/8

9

<http://cflu.lab.nycu.edu.tw>

Susceptibility and Phase Relations

- MRI equations
 $\omega = \gamma B_0$
 - Phase, $\psi = \omega t$
 - Phase changes, $\Delta\psi = \Delta\omega \cdot TE$
- Relating to susceptibility,
 - Since $\Delta\omega = \gamma \Delta B$ and $\Delta B = g^* \Delta \chi B_0$ g is a geometric constant.
 - $\Delta\psi = -\gamma \Delta B \cdot TE$
 $= -\gamma g \Delta \chi B_0 \cdot TE$

Change of susceptibility can result in the phase shift.

Haacke et al., AJNR 2009.

2024/4/8

10

<http://cflu.lab.nycu.edu.tw>

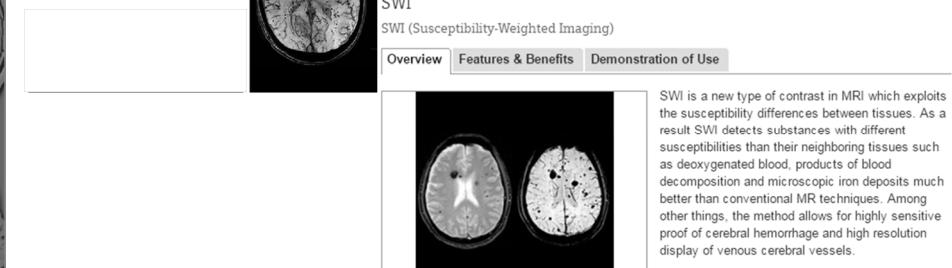
Imaging Acquisition

- High-resolution 3D gradient echo imaging with 3-direction flow compensation
 - Long TR
 - Long TE (~40 ms at 1.5T, ~25 ms at 3.0T) to get T2* weighting
- Utilize both magnitude and phase images

<http://cflu.lab.nycu.edu.tw>

2024/4/8

11



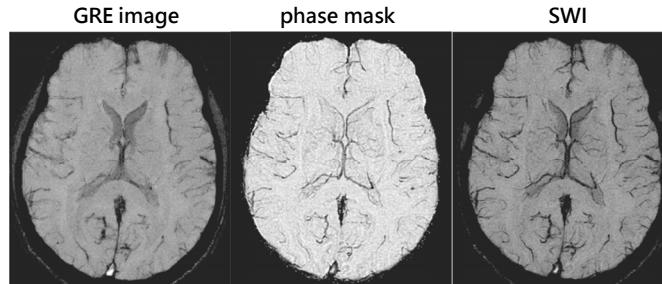
Commercial Name

- GE: SWAN, Siemens: SWI

SWAN

Designed for excellent visualization of vasculature and blood products.
(Susceptibility-Weighted ANgiography)

<http://cflu.lab.nycu.edu.tw>

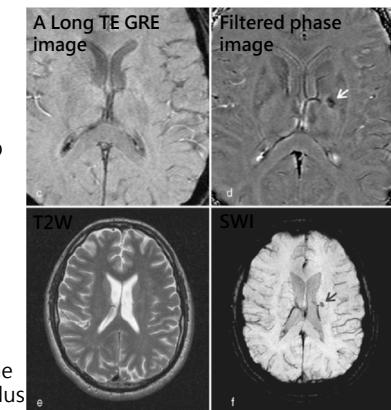

2024/4/8

12

SWI vs. conventional GRE

- The use of the filtered phase to enhance contrast.

<http://cflu.lab.nycu.edu.tw>


2024/4/8

13

SWI vs. conventional GRE

- Tissues that have very low and uniform iron distribution will show a phase effect, but not a T2* effect.
 - Without phase dispersion → no T2* effect.

Microbleed at the left globus pallidus

<http://cflu.lab.nycu.edu.tw>

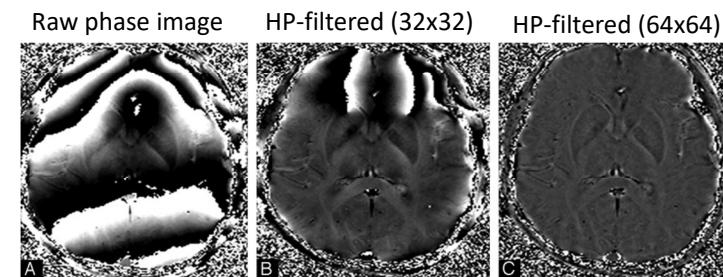
2024/4/8

14

HPF: high-pass filter


Outline of SWI processing

- Acquire high-resolution 3D GRE with flow compensation.
- Apply HPF to phase image to obtain SWI filtered phase data.
- Create phase mask depending on sign.
- Multiply phase mask by original magnitude image to obtain "merged SWI magnitude data."
- Perform a minimum intensity projection (mIP) over neighboring slices

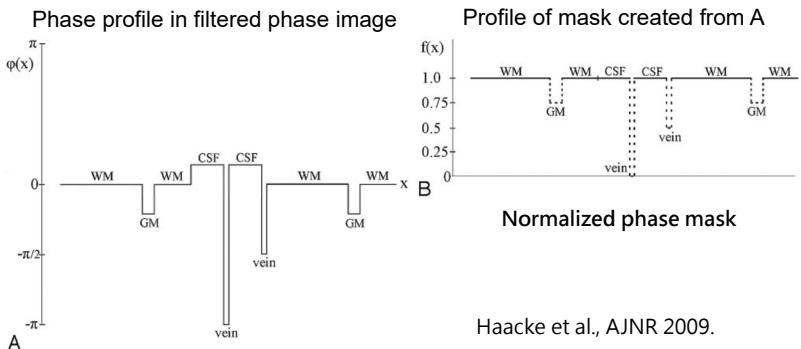

<http://cflu.lab.nycu.edu.tw>

2024/4/8

15

Filtered phased images

- Truncate original image $\rho(r)$ to central $n \times n$ complex image $\rho_n(r)$.
- Zero-fill elements outside central $n \times n$ elements
- Complex divide $\rho(r)$ by $\rho_n(r)$ to obtain a new image, $\rho'(r) = \rho(r)/\rho_n(r)$

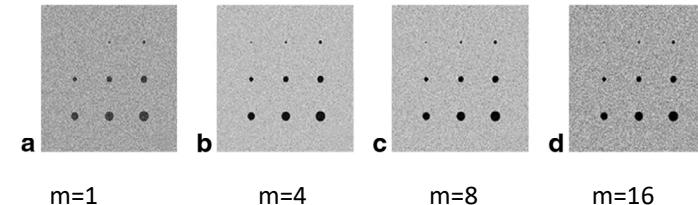

Haacke et al., AJNR 2009.

<http://cflu.lab.nycu.edu.tw>

2024/4/8

16

Phase Masking Process

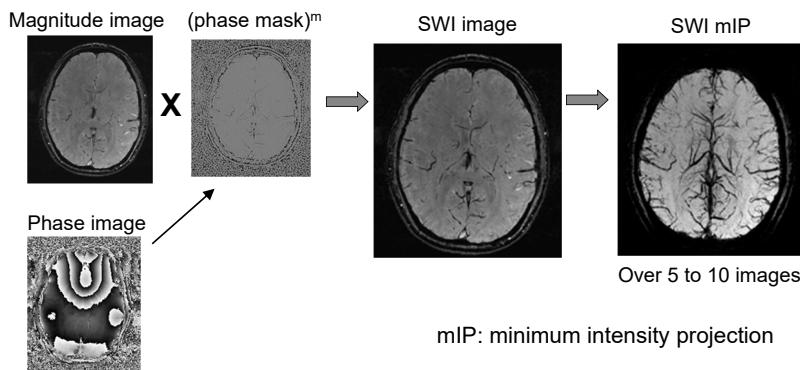

<http://cflu.lab.nycu.edu.tw>

2024/4/8

17

Phase Mask Multiplication

$$\rho(x)_{\text{new}} = f^m(x)\rho(x)$$


Haacke et al., MRM, 2004.

<http://cflu.lab.nycu.edu.tw>

2024/4/8

18

Outline of SWI processing

<http://cflu.lab.nycu.edu.tw>

2024/4/8

19

mIP: Minimum Intensity Projection

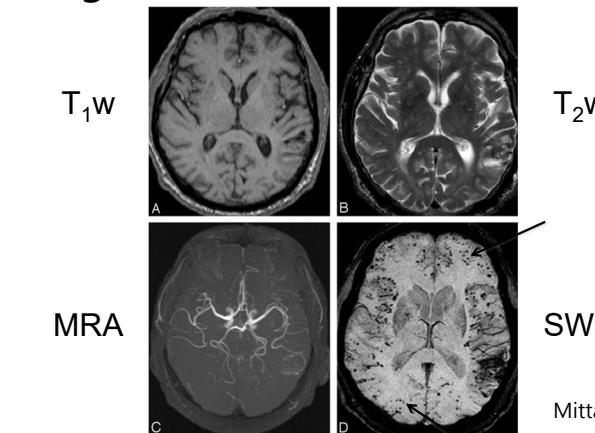
<http://cflu.lab.nycu.edu.tw>

2024/4/8

20

Clinical Applications

- Hemorrhages
- Cerebrovascular and ischemic brain diseases
- Traumatic brain injuries
- Arteriovenous malformations
- Neurodegenerative diseases
- Breast microcalcifications


<http://cflu.lab.nycu.edu.tw>

2024/4/8

21

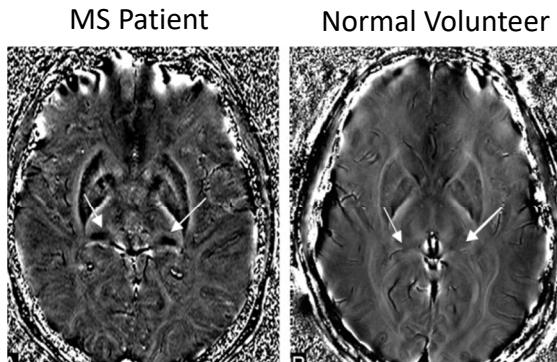
Seeing Microbleeds with SWI

T₂W

T₁W

MRA

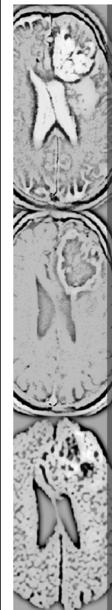
SWI


Mittal et al., AJNR 2009.

2024/4/8

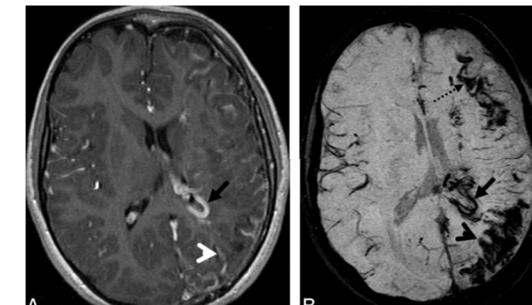
22

SWI in Multiple Sclerosis



Iron build up in the pulvinar in MS indicated with SWI

<http://cflu.lab.nycu.edu.tw>


2024/4/8

23

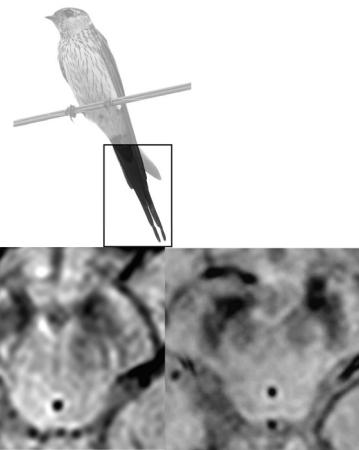
Sturge Weber Syndrome

Often found in children leads to vascular malformation.

A
Post-contrast T1w
Leptomeninges (arrowhead)
Periventricular veins (arrow)

B
SWI – calcification of gyri (dotted/arrowhead)
Periventricular veins (arrow)

<http://cflu.lab.nycu.edu.tw>


2024/4/8

24

Swallow tail sign

- The swallow tail sign describes the normal axial imaging appearance of nigrosome-1 (黑質體1) within the substantia nigra (黑質) on high resolution SWI.
- Absence of the sign (absent swallow tail sign) is reported to have a diagnostic accuracy of greater than 90% for Parkinson disease.

<http://radiopaedia.org/articles/swallow-tail-sign>

2024/4/8

25

Recap

- Deoxygenated blood (去氧血紅素), iron storage (hemosiderin or ferritin), and calcium (鈣化) have different susceptibilities from surrounding tissues.
- Change of susceptibility can result in the phase shift.
- The filtered phase image is used as mask to multiply with magnitude image.
- SWI is particularly useful for the diagnosis of microbleed, calcifications, and neurodegenerative disease.

<http://cflu.lab.nycu.edu.tw>

2024/4/8

26

THE END

alvin4016@nycu.edu.tw