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K-means, hierarchical clustering

Unsupervised Learning: 

Hard Clustering
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Unsupervised Learning: Clustering
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• The goal is to discover interesting things 
about the measurements on x1,x2, . . .,xn. 

• Can we discover subgroups among the 
variables or among the observations?

• We may have a reason to believe that there 
is some heterogeneity among the n 
observation samples.

• Clustering looks to find homogeneous 
subgroups among the observations.



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

K-Means Clustering
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• We must first specify the desired number of clusters K.

• Let C1, . . ., CK denote sets containing the indices of the 
observations in each cluster.

1. 𝑪𝟏 ∪ 𝑪𝟐 ∪⋯∪ 𝑪𝑲 = 𝟏,… , 𝒏

Each observation belongs to at least one of the clusters.

2. 𝑪𝒌 ∩ 𝑪𝒌′ = ∅, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒌 ≠ 𝒌′

The clusters are non-overlapping. 

No observation belongs to more than one cluster.

K = 3

C1

C2

C3

< Definition of hard clustering >
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K-Means Clustering
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• A good clustering should have the within-cluster variation, W(Ck), to be as 
small as possible.

• Hence, we want to minimize W(Ck)

𝒂𝒓𝒈 𝐦𝐢𝐧
𝑪
𝟏
,…,𝑪𝒌



𝒌=𝟏

𝑲

𝑾(𝑪𝒌)

• The most common estimate of W(Ck) is squared Euclidean distance.

𝑾 𝑪𝒌 =
𝟏

𝑵𝒌


𝒊,𝒊′∈𝑪𝒌



𝒋=𝟏

𝒑

𝒙𝒊𝒋 − 𝒙𝒊′𝒋
𝟐
= 𝟐

𝒊∈𝑪𝒌



𝒋=𝟏

𝒑

𝒙𝒊𝒋 − ഥ𝒙𝒌𝒋
𝟐

𝑿𝒊 = 𝒙𝒊𝟏, 𝒙𝒊𝟐, … , 𝒙𝒊𝒑
The ith sample Xi includes p features
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Algorithm of K-Means Clustering
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• Assign cluster randomly 

• Compute the cluster centroid

• Re-assign the cluster based on the closest centroid
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Algorithm of K-Means Clustering
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1. Randomly assign a number, from 1 to K, to each of the observations. 
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The kth 
cluster centroid is the vector of the p feature means for the 
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest 
(where closest is defined using Euclidean distance).



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Avoiding Local Optimum
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• Because the clustering results depend on the initial (random) cluster 
assignment, a local rather than global optimum may be obtained.

• Run the algorithm multiple times from different random initial 
configurations  select the best solution with smallest objective.

320.9 235.8 235.8235.8 235.8 310.9
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Exercise – K-Means Clustering
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• Partition data into K mutually exclusive clusters.

• Fisher’s Iris dataset (load fisheriris)

• 50 samples from each of three species of Iris

• Four features were measured from each sample: the 
length and the width of the sepals and petals (in cm)

150 observations of iris

MLmaterials_L4\Ex_Kmeans.mIris setosa Iris versicolor Iris virginica
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Exercise – K-Means Clustering
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• Perform K-means clustering with 20 replicates and 
parallel computing

opts = statset('UseParallel',1);

[ind,C,sumd] = kmeans(meas,3,'MaxIter',10000,…

'Replicates',20,'Options',opts);

• Replicate 10, 3 iterations, total sum of distances = 78.8514.

• Replicate 9, 4 iterations, total sum of distances = 78.8514.

• Replicate 14, 10 iterations, total sum of distances = 142.754.

• Replicate 12, 7 iterations, total sum of distances = 78.8557.

• Replicate 11, 2 iterations, total sum of distances = 78.8557.

• Best total sum of distances = 78.8514

MLmaterials_L4\Ex_Kmeans.m
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Hierarchical Clustering
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• An alternative approach which 
does not require that we commit 
to a particular choice of K.

• An added advantage over K-
means clustering in that it results 
in an attractive tree-based 
representation of the observations, 
called a dendrogram.

45 observations
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Interpretation of Dendrogram
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• The earlier (lower in the tree) fusions occur, the more similar the groups of 
observations are to each other.

• the height of the cut to the dendrogram serves controls the number of 
clusters obtained.

One single dendrogram can be used to obtain any number of clusters.
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Algorithm of Hierarchical Clustering
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1. Begin with n observations and a measure (such as Euclidean distance) 

of all the 
𝑛
2

= 𝑛(𝑛 − 1)/2 pairwise dissimilarities.

2. For 𝑘 = 𝑛, 𝑛 − 1, 𝑛 − 2,… , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the k clusters 
and identify the pair of clusters that are least dissimilar (that is, most 
similar). Fuse these two clusters. 

The dissimilarity between these two clusters indicates the height in the 
dendrogram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among the k − 
1 remaining clusters (linkage, dissimilarities between clusters).



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Dissimilarities – Distance metric
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Value Description

'euclidean' Euclidean distance (default).

'squaredeuclidean' Squared Euclidean distance. (This option is provided for efficiency only. It does not satisfy the triangle 

inequality.)

'seuclidean' Standardized Euclidean distance. Each coordinate difference between observations is scaled by 

dividing by the corresponding element of the standard deviation, S = nanstd(X). Use DistParameter to 

specify another value for S.

'mahalanobis' Mahalanobis distance using the sample covariance of X, C = nancov(X). Use DistParameter to 

specify another value for C, where the matrix C is symmetric and positive definite.

'cityblock' City block distance.

'minkowski' Minkowski distance. The default exponent is 2. Use DistParameter to specify a different exponent P, 

where P is a positive scalar value of the exponent.

'chebychev' Chebychev distance (maximum coordinate difference).

'cosine' One minus the cosine of the included angle between points (treated as vectors).

'correlation' One minus the sample correlation between points (treated as sequences of values).

'hamming' Hamming distance, which is the percentage of coordinates that differ.

'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.

'spearman' One minus the sample Spearman's rank correlation between observations (treated as sequences of 

values).

@distfun Custom distance function handle. A distance function has the form

https://localhost:31515/static/help/stats/nanstd.html
https://localhost:31515/static/help/stats/nancov.html
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Linkage Methods
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Method Description

'average' Unweighted average distance

'centroid' Centroid distance, appropriate for Euclidean distances only

'complete' Farthest distance

'median' Weighted center of mass distance, appropriate for Euclidean 

distances only

'single' Shortest distance

'ward' Inner squared distance (minimum variance algorithm), 

appropriate for Euclidean distances only

'weighted' Weighted average distance
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Demo Dataset – NCI60
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• Cancer Microarray Project
• http://genome-www.stanford.edu/nci60/

• NCI60 is a dataset of gene expression profiles of 60 National Cancer 
Institute (NCI) cell lines.

• derived from patients with leukaemia, melanoma, lung, colon, central nervous 
system, ovarian, renal, breast and prostate cancers. 

• Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey 
SS, Van de Rijn M, Waltham M, Pergamenschikov A. Systematic variation in 
gene expression patterns in human cancer cell lines. Nature genetics. 2000 
Mar;24(3):227-35.

http://genome-www.stanford.edu/nci60/
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Demo Dataset – NCI60
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• MLmaterials_L4\NCI60data.csv
64 x 6830 matrix
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Exercise – Hierarchical Clustering
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• Find the similarity or dissimilarity between every pair of objects 
in the data set.

>> pdist

• Group the objects into a binary, hierarchical cluster tree.

>> linkage

• Determine where to cut the hierarchical tree into clusters.

>> cluster

MLmaterials_L4\Ex_HierarchicalClustering.m
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Exercise – Hierarchical Clustering
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• Average and complete
linkage tend to yield more 
balanced clusters.

• Single linkage can result in 
extended, trailing clusters in 
which single observations are 
fused one-at-a-time.

Complete Linkage

Average Linkage

Single Linkage

MLmaterials_L4\Ex_HierarchicalClustering.m
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Exercise – Hierarchical Clustering
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Complete Linkage

maxclust = 5
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Mixture models

Unsupervised Learning: 

Soft Clustering

24
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Mixture Models

25

• Instead of exclusive clusters, statistical mixtures represent each cluster as 
a probability density.

• We can model clusters with a wide variety of shapes in almost any type of 
data.



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Gaussian Mixture Models

26

• The density function for xn, given that it is from the kth component (znk=1), 
is a Gaussian with mean μk and covariance Σk.

𝒑 𝒙𝒏ห𝒛𝒏𝒌 = 𝟏, 𝝁𝒌, 𝜮𝒌 = 𝑵 𝝁𝒌, 𝜮𝒌

𝝁𝟏 = 𝟑, 𝟑 , 𝜮𝟏 =
𝟏 𝟎
𝟎 𝟐

𝝁𝟐 = 𝟐,−𝟒 , 𝜮𝟐 =
𝟐 𝟎
𝟎 𝟏

𝜇3 = 0,0 , Σ3 =
1.5 0
0 2

𝝅𝟏 = 𝟎. 𝟕, 𝝅𝟐 = 𝟎. 𝟐, 𝝅𝟑 = 𝟎. 𝟏
Probability for each cluster
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Expectation-Maximization (EM) Algorithm
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• An expectation (E) step 

• creates a function for the expectation of 
the log-likelihood evaluated using the 
current estimate for the parameters, and 

• A maximization (M) step 

• computes parameters maximizing the 
expected log-likelihood found on 
the E step.

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

𝑳 = 

𝒏=𝟏

𝑵

𝒍𝒐𝒈

𝒌=𝟏

𝑲

𝝅𝒌 𝒑 𝒙𝒏ห𝝁𝒌, 𝜮𝒌
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Exercise – Gaussian Mixture Models
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• Create simulated data from a mixture 
of two bivariate Gaussian distributions.

𝝁𝟏 = 𝟏, 𝟐 , 𝜮𝟏 =
𝟑 𝟎. 𝟐
𝟎. 𝟐 𝟐

𝝁𝟐 = −𝟏,−𝟐 , 𝜮𝟐 =
𝟐 𝟎
𝟎 𝟏

• Fit a two-component Gaussian 
mixture model

>> gm = fitgmdist(X,K);

𝝁𝟏
′ = 𝟏. 𝟎𝟖, 𝟐. 𝟎𝟒 , 𝚺𝟏

′ =
𝟑. 𝟔𝟔 𝟎. 𝟏𝟖
𝟎. 𝟏𝟖 𝟏. 𝟓𝟏

𝝁𝟐
′ = −𝟎. 𝟖𝟑,−𝟏. 𝟖𝟓 , 𝚺𝟐

′ =
𝟏. 𝟔𝟕 𝟎. 𝟏𝟑
𝟎. 𝟏𝟑 𝟎. 𝟗𝟖 MLmaterials_L4\Ex_GaussianMixModel.m

300 observations
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Exercise – Posterior Probabilities
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• Estimate component-member posterior 
probabilities for all data points

>> P = posterior(gm,X);

MLmaterials_L4\Ex_GaussianMixModel.m
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Exercise – Soft Clustering
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• Assign clusters by maximum posterior probability. 

ind = cluster(gm,X);

• Identify points that could be in either cluster.

threshold = [0.4 0.6];

indBoth = find(P(:,1)>=threshold(1)…

& P(:,1)<=threshold(2)); 

MLmaterials_L4\Ex_GaussianMixModel.m
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Contact:
盧家鋒 alvin4016@nycu.edu.tw

THE END
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