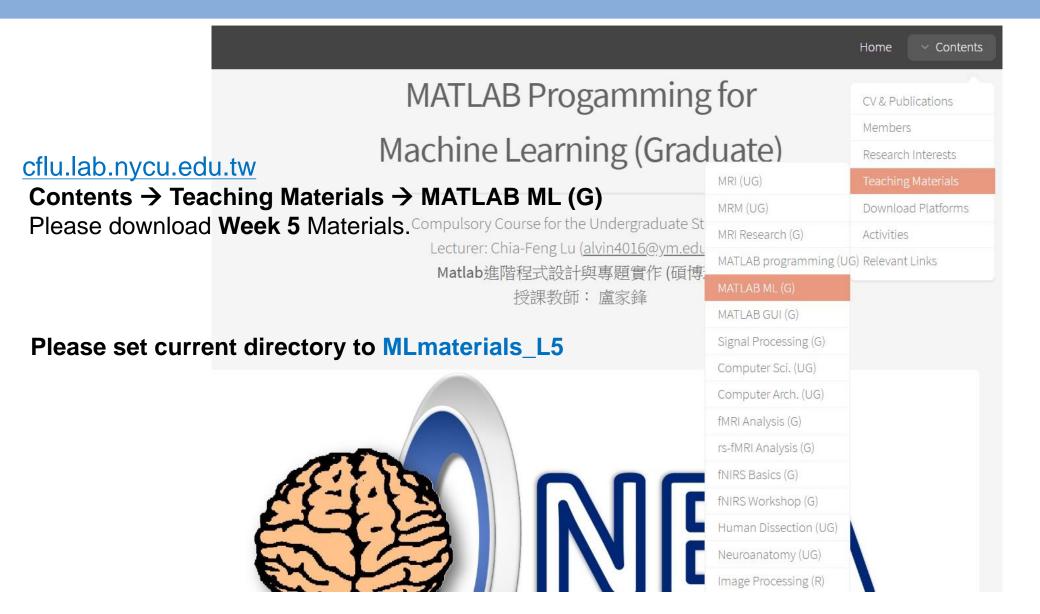


Regression Analysis

MATLAB進階程式語言與實作

盧家鋒 Chia-Feng Lu, Ph.D. Department of Biomedical Imaging and Radiological Sciences, NYCU alvin4016@nycu.edu.tw

Teaching Materials



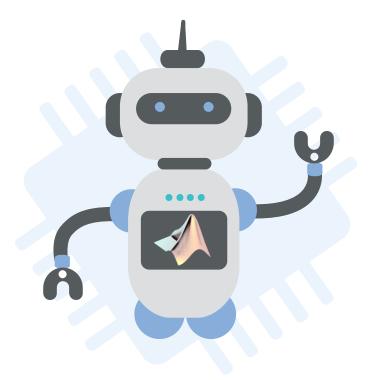
Contents in this Week

01 Parametric Regression

Linear and nonlinear regression

02 Nonparametric Regression

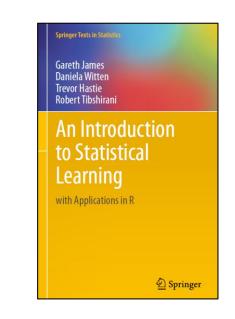
Regression tree

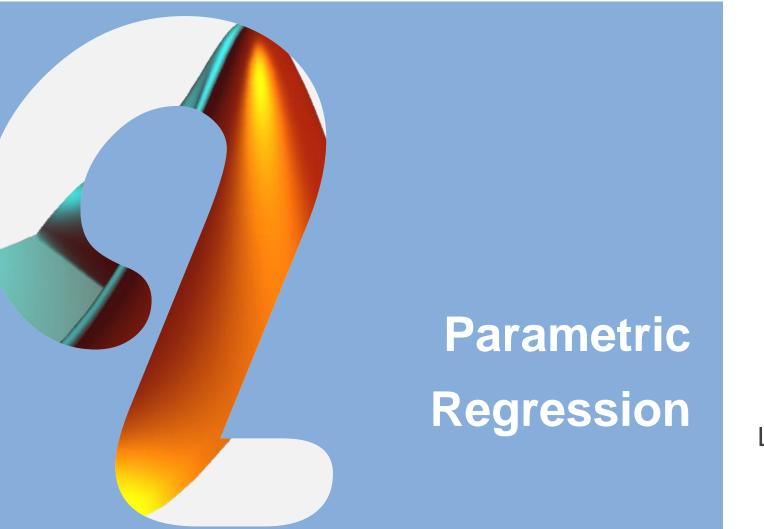


[Textbook 3]

References

- An Introduction to Statistical Learning, 2nd edition, 2013 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
- Online resources: https://github.com/rghan/ISLR
- Online resources: https://github.com/JWarmenhoven/ISLR-python
- Linear and nonlinear regression (Ch.3)
- KNN regression (Ch.3.5), regression tree (Ch.8.1)





Linear and nonlinear regression

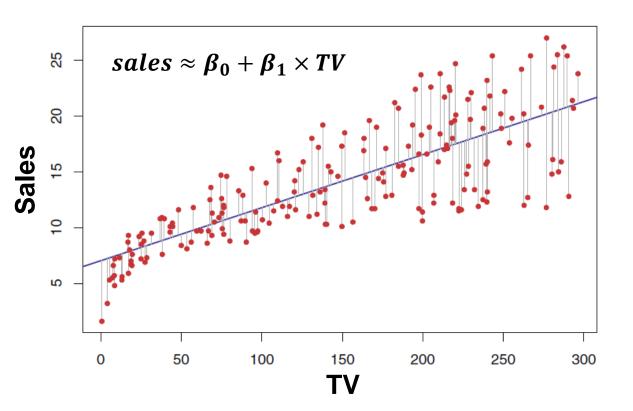
Linear Regression

• Linear regression is a useful tool for predicting a quantitative response.

 $Y \approx \beta_0 + \beta_1 X$ $\widehat{y} \approx \widehat{\beta}_0 + \widehat{\beta}_1 x$ $\int_{Estimated model coefficients}$ Predicted response

 $e_i = y_i - \hat{y}_i$ $RSS = e_1^2 + e_2^2 + \dots + e_n^2$

Residual sum of squares (RSS)



Advertising Dataset

- Sales (in thousands of units) for a particular product as a function of advertising budgets (in thousands of dollars) for TV, radio, and newspaper media.
- Including 200 observations (markets).

	А	В	С	D	E
1		TV	Radio	Newspape	Sales
2	1	230.1	37.8	69.2	22.1
В	2	44.5	39.3	45.1	10.4
4	3	17.2	45.9	69.3	9.3
5	4	151.5	41.3	58.5	18.5
6	5	180.8	10.8	58.4	12.9
7	б	8.7	48.9	75	7.2
В	7	57.5	32.8	23.5	11.8
9	8	120.2	19.6	11.6	13.2
0	9	8.6	2.1	1	4.8
1	10	199.8	2.6	21.2	10.6
2	11	66.1	5.8	24.2	8.6
3	12	214.7	24	4	17.4
4	13	23.8	35.1	65.9	9.2
5	14	97.5	7.6	7.2	9.7
6	15	204.1	32.9	4б	19
7	16	195.4	47.7	52.9	22.4

MLmaterials_L5\Advertising.csv

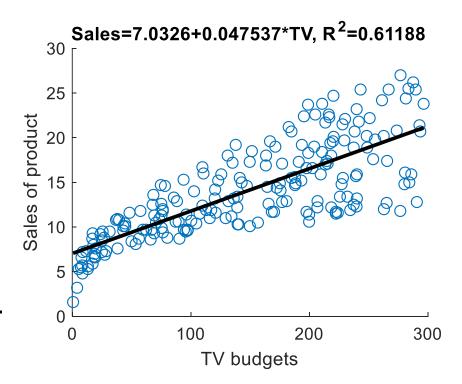
Questions to be Addressed

- Is there a *relationship* between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media **contribute** to sales?
- How accurately can we estimate the effect of each medium on sales?
- How accurately can we **predict future sales**?
- Is the relationship linear?
- Is there synergy among the advertising media?

Exercise – Univariate Linear Regression

Regress "Sales" on "TV" budget

```
mdl_tv = fitlm(TV,Sales)
figure, scatter(TV,Sales), hold on
plot([min(TV), max(TV)],...
    [predict(mdl_tv,min(TV)), predict(mdl_tv,max(TV))],...
    'k-','linewidth',2)
xlabel('TV budgets'), ylabel('Sales of product')
title(['Sales=' num2str(mdl_tv.Coefficients.Estimate(1)) '+' ...
      num2str(mdl_tv.Coefficients.Estimate(2)) '*TV',...
```



', R^2=' num2str(mdl_tv.Rsquared.Ordinary)])

Lines 15 to 28 in MLmaterials_L5\Ex_LinearRegression.m

Exercise – Univariate Linear Regression

• Information of the linear regression model

mdl_tv =

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

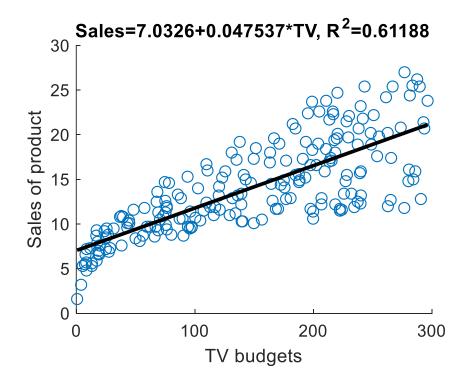
Estimate		SE	tStat pValue	
- (Intercept) 7.0326	0.45784	15.36	1.4063e-35
x1	0.047537	0.0026906	17.668	1.4674e-42

Number of observations: 200, Error degrees of freedom: 198

Root Mean Squared Error: 3.26

R-squared: 0.612, Adjusted R-Squared: 0.61

F-statistic vs. constant model: 312, p-value = 1.47e-42



Exercise – Multiple Linear Regression

$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$

- 1. Is at least one of the predictors X1,X2, ..., Xp useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?
- Regress "Sales" on "TV", "Radio", and "Newspaper" budgets

mdl_multiple = fitlm([TV,Radio,Newspaper],Sales)

Lines 31 to 34 in MLmaterials_L5\Ex_LinearRegression.m

Exercise – Multiple Linear Regression

• Information of the multiple linear regression model

mdl_multiple =

Linear regression model:

 $y \sim 1 + x1 + x2 + x3$

Estimated Coefficients:

Estimate		SE	tStat pValue	
(Intercept)	2.9389	0.31191	9.4223	1.2673e-17
x1	0.045765	0.0013949	32.809	1.51e-81
x2	0.18853	0.0086112	21.893	1.5053e-54
x3	-0.0010375	0.005871	-0.17671	0.85992

Number of observations: 200, Error degrees of freedom: 196

Root Mean Squared Error: 1.69

R-squared: 0.897, Adjusted R-Squared: 0.896

F-statistic vs. constant model: 570, p-value = 1.58e-96

Non-Linear Polynomial Regression

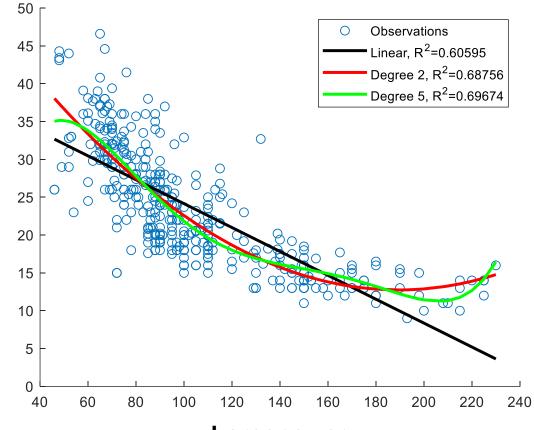
 $Y \approx \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_p X^p$

p_d2=polyfit(horsepower,mpg,2);

% residual sum of square RSS=sum((polyval(p_d2,horsepower)... -mpg).^2);

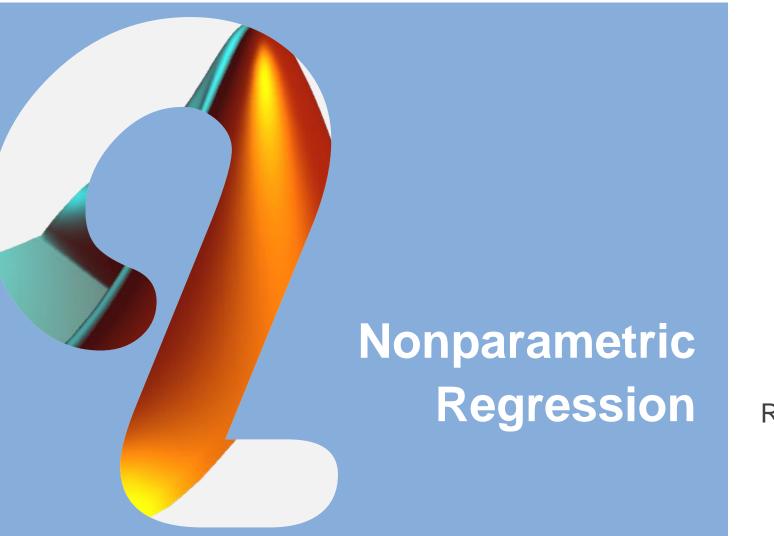
% total sum of square

TSS=sum((mpg-mean(mpg)).^2); R_square_d2=1-RSS/TSS;



horsepower

MLmaterials_L5\Auto.csv MLmaterials_L5\Ex_PolyRegression.m



Regression tree

Parametric vs. Nonparametric

Parametric methods

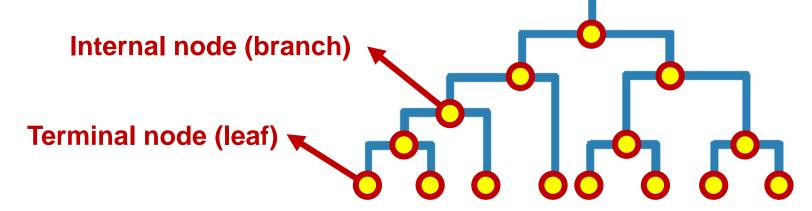
- Such as the linear regression and polynomial regression.
- **Pro:** They are often easy to fit, because one need estimate only a small number of coefficients.
- **Con:** They make strong assumptions about the form of f(X).

Nonparametric methods

- Such as the KNN regression, regression tree, and SVM regression
- They do not explicitly assume a parametric form for f(X), and thereby provide an alternative and more flexible approach for performing regression.

Decision Trees

- Decision trees can be applied to both regression and classification problems.
- Tree-based methods are simple and useful for interpretation.
- Combining a larger number of trees can often result in improvements in prediction accuracy.
 - · Bagging, random forests, and boosting.



Hitters Dataset

- Major League Baseball Data for 322 players from 1986 and 1987 seasons.
- Salary: 1987 annual salary on opening day in thousands of dollars
- Years: Number of years in the major leagues
- Hits: Number of hits in 1986 (安打)
- RBI: Number of runs batted in in 1986 (打點)
- PutOuts: Number of put outs in 1986 (出局)
- Walks: Number of walks in 1986 (保送)
- Runs: Number of runs in 1986 (得分)

	А	В	С	D	
1	Player	AtBat	Hits	HmRun	Ru
2	Andy Allanson	293	66	1	
3	Alan Ashby	315	81	7	
4	Alvin Davis	479	130	18	
5	Andre Dawson	496	141	20	
6	Andres Galarraga	321	87	10	
7	Alfredo Griffin	594	169	4	
8	Al Newman	185	37	1	
9	Argenis Salazar	298	73	0	
10	Andres Thomas	323	81	б	
11	Andre Thornton	401	92	17	
12	Alan Trammell	574	159	21	
13	Alex Trevino	202	53	4	
14	Andy VanSlyke	418	113	13	

MLmaterials_L5\Hitters.csv

Hitters Dataset

- Preprocessing steps after reading Hitters.csv
 - Converting data format to the Table array.
 - Removing the players with missing Salary data.
 - Log-transform of Salary to have a typical bell-shape distribution.

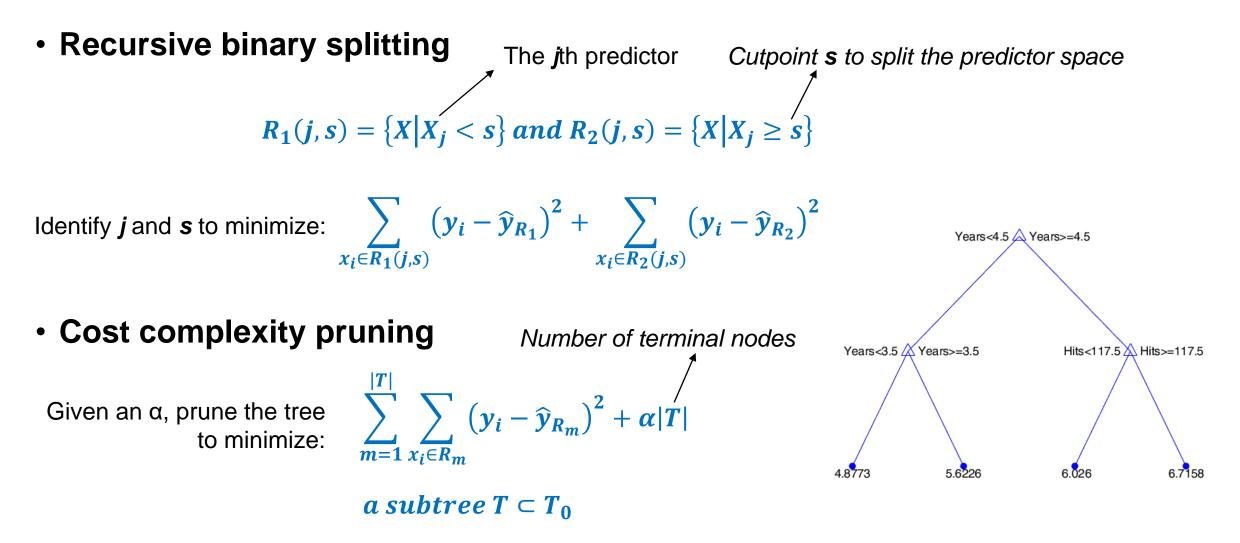
Lines 5 to 16 in	
MLmaterials_L5\Ex	_RegressionTree.m

17	18	19	20	2:
Outs	Assists	Errors	Salary	NewLe
446		20	N - N IValV	
632	43	10	475	'N '
880	82	14	480	'A'
200	11	3	500	'N '
805	40	4	91.5000	'N '
282	421	25	750	'A'
76	127	7	70	'A'

Algorithm of Regression Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations ('MinLeafSize').
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α ('PruneAlpha').
- 3. Return the subtree from Step 2 that corresponds to the chosen value of α. (prune)

Algorithm of Regression Tree



Exercise – Data Separation

• Separate data into training (70%) and test (30%) datasets

rng(0,'twister') % For reproducibility

C = cvpartition(size(data,1),'holdout',0.30); % hold out 30% for test dataTrain = data(C.training,:); 185 players (70%) for training dataTest = data(C.test,:);

78 players (30%) for test

Lines 18 to 23 in MLmaterials_L5\Ex_RegressionTree.m

Exercise – Regression Tree

• [Method 1] Construct a regression tree using six variables/features

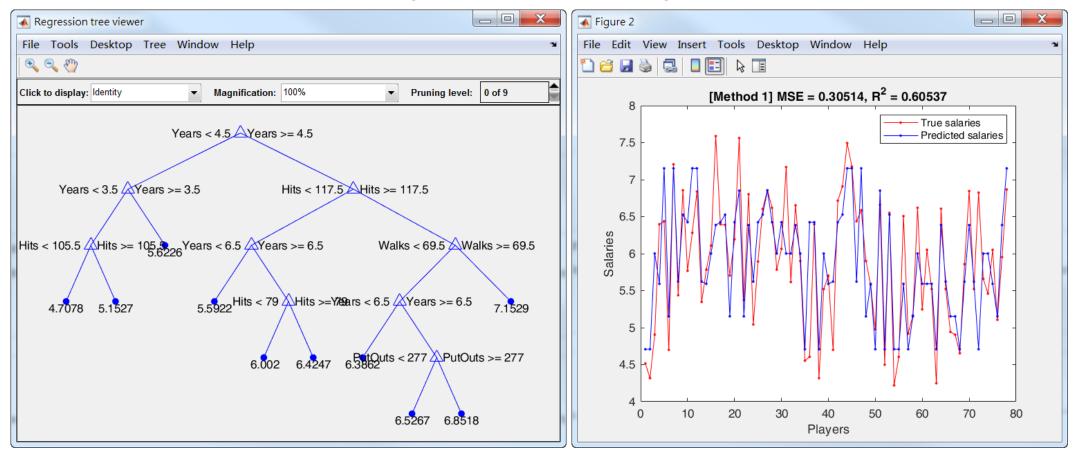
predictors={'Years','Hits','RBI','PutOuts','Walks','Runs'}; tree_6v = fitrtree(dataTrain,'Salary','PredictorNames',predictors,... 'OptimizeHyperparameters','all',... 'HyperparameterOptimizationOptions',... struct('AcquisitionFunctionName','expected-improvement-plus','kfold',5));

view(tree_6v,'Mode','graph')

Lines 25 to 46 in MLmaterials_L5\Ex_RegressionTree.m

Exercise – Regression Tree

• [Method 1] Construct a regression tree using six variables/features

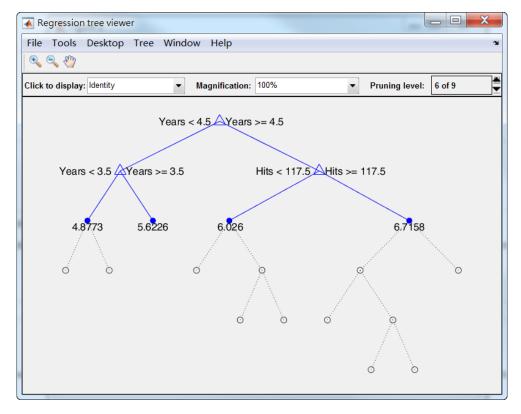


Lines 25 to 46 in MLmaterials_L5\Ex_RegressionTree.m

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Exercise – Tree Pruning

• [Method 2] Prune the constructed regression tree to reduce the complexity



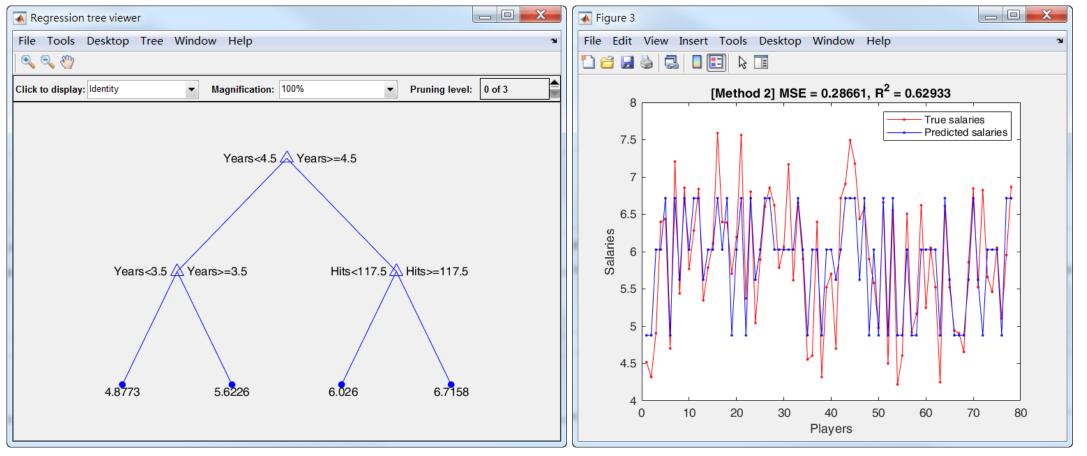
```
prunelevel=6;
tree_prune = prune(tree_6v,'level',prunelevel);
% prunealpha=0.03;
% tree_prune = prune(tree_6v,'alpha',prunealpha);
```

view(tree_prune,'Mode','graph')

Lines 47 to 68 in MLmaterials_L5\Ex_RegressionTree.m

Exercise – Tree Pruning

• [Method 2] Prune the constructed regression tree to reduce the complexity



Lines 47 to 68 in MLmaterials_L5\Ex_RegressionTree.m

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Exercise – Identify Key Variables

Variable/feature selection based on the importance scores

imp = predictorImportance(tree_6v);

figure; bar(imp);

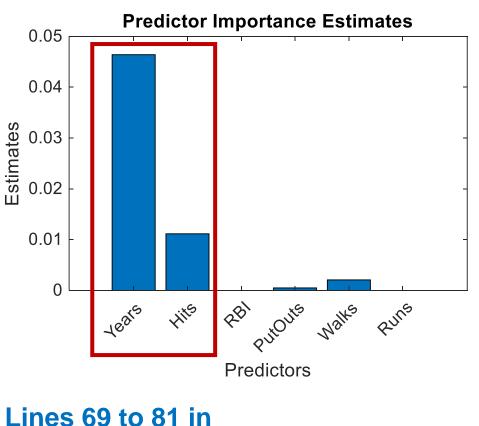
title('Predictor Importance Estimates'); ylabel('Estimates'); xlabel('Predictors');

h = gca;

h.XTickLabel = tree_6v.PredictorNames;

h.XTickLabelRotation = 45;

h.TickLabelInterpreter = 'none';



Exercise – Regression Tree

• [Method 3] Construct a regression tree using key variables/features

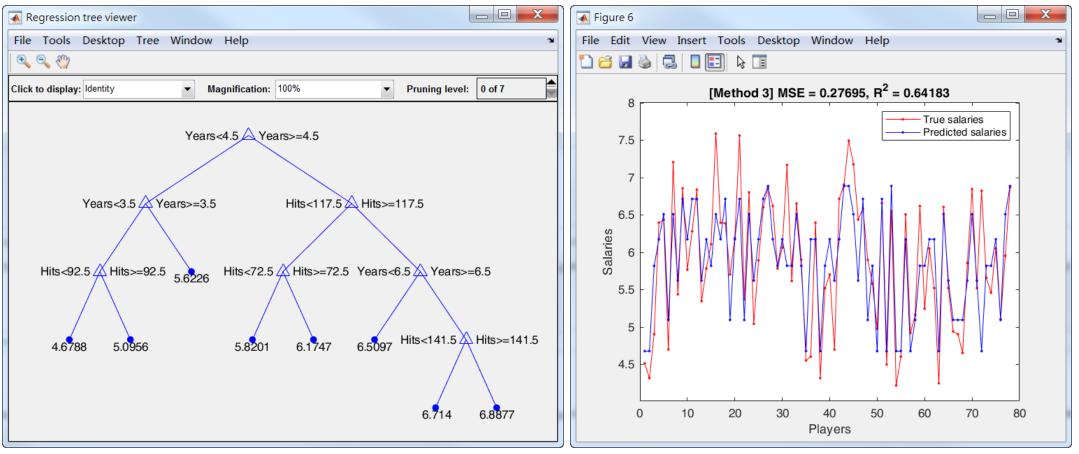
predictors={'Years','Hits'}; % only use the two key variables/features
tree_2v = fitrtree(dataTrain,'Salary','PredictorNames',predictors,...
'OptimizeHyperparameters','all',...
'HyperparameterOptimizationOptions',...
struct('AcquisitionFunctionName','expected-improvement-plus','kfold',5));

view(tree_2v,'Mode','graph')

Lines 82 to 102 in MLmaterials_L5\Ex_RegressionTree.m

Exercise – Regression Tree

• [Method 3] Construct a regression tree using key variables/features



Lines 82 to 102 in MLmaterials_L5\Ex_RegressionTree.m

MATLAB Regression Learner

>> regressionLearner

A Regression Learner - Predicted vs. Actual P	ot			
REGRESSION LEARNER VIEW				/ titi tito d' 🗗 😯 🛛
			🗮 🕞 🕞	✓
NewFeaturePCAQuadraticCuSession ▼SelectionSVM	ibic SVM Fine Medium Advanced Gaussian	Use Train Response Predicted Parallel Plot Actual P		
FILE FEATURES	MODEL TYPE	TRAINING PLOTS	EXPORT	Ā
Data Browser	Response Plot X Predicted vs. A	ctual Plot 🗶 Residuals Plot 🗶		
▼ History		Predictions: model 5.5	le	egend
Last change: Cubic SVM 2/7 feature	3 🔺	Fredictions. model 5.5		
5.4 ☆ SVM RMSE: 0.6038	5			 Observations
Last change: Fine Gaussian SVM 2/7 feature	s 7.5			 Perfect prediction
5.5 ☆ SVM RMSE: 0.577	ə			
Last change: Medium Gaussian SVM 2/7 feature	s 7	• • • • •		ow to use the predicted vs. actual
5.6 ☆ SVM RMSE: 0.5952	3 ⁽¹⁾		• • •	lot
Last change: Coarse Gaussian SVM 2/7 feature	s 6.5		•	
6.1 🟠 Ensemble RMSE: 0.6450	3 s 9 s z s s Leqicted response 6 0 5.5			
Last change: Boosted Trees 7/7 feature	s p 6			
6.2 ☆ Ensemble RMSE: 0.6771				
Last change: Bagged Trees 7/7 feature	2 0 5.5			
▼ Current Model	5			
Model 5.5: Trained	4.5		•	
	4.5			
Results				
RMSE 0.5779	4.5	5 5.5 6 6.5 7 7	7.5	
R-Squared 0.58	~	True response		
Data set: dataTrain Observations: 185	Size: 116 kB Predictors: <u>7</u> Response: S	alary	Validation: 5-fold Cross-Validation	on
Bata set data main observations. 100	aler Let RB Treaterors, <u>7</u> Responser B			, L

Contact: 盧家鋒 alvin4016@nycu.edu.tw