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[Textbook 3]

• An Introduction to Statistical Learning, 2nd edition, 2013
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

• Online resources: https://github.com/rghan/ISLR

• Online resources: https://github.com/JWarmenhoven/ISLR-python

• Linear and nonlinear regression (Ch.3)

• KNN regression (Ch.3.5), regression tree (Ch.8.1)

https://github.com/rghan/ISLR
https://github.com/JWarmenhoven/ISLR-python
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Linear Regression

6

• Linear regression is a useful tool for predicting a quantitative response.

𝒀 ≈ 𝜷𝟎 + 𝜷𝟏𝑿
𝒔𝒂𝒍𝒆𝒔 ≈ 𝜷𝟎 + 𝜷𝟏 × 𝑻𝑽

ෝ𝒚 ≈ 𝜷𝟎 + 𝜷𝟏𝒙

Estimated model coefficients

Predicted response

𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊

𝑹𝑺𝑺 = 𝒆𝟏
𝟐 + 𝒆𝟐

𝟐 +⋯+ 𝒆𝒏
𝟐

Residual sum of squares (RSS) TV
S

a
le

s
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Advertising Dataset
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• Sales (in thousands of units) for a particular 
product as a function of advertising 
budgets (in thousands of dollars) for TV, 
radio, and newspaper media.

• Including 200 observations (markets).

MLmaterials_L5\Advertising.csv
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Questions to be Addressed
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• Is there a relationship between advertising budget and sales?

• How strong is the relationship between advertising budget and sales?

• Which media contribute to sales?

• How accurately can we estimate the effect of each medium on sales?

• How accurately can we predict future sales?

• Is the relationship linear?

• Is there synergy among the advertising media?
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Exercise – Univariate Linear Regression

9

• Regress "Sales" on "TV" budget

mdl_tv = fitlm(TV,Sales)

figure, scatter(TV,Sales), hold on

plot([min(TV), max(TV)],…

[predict(mdl_tv,min(TV)), predict(mdl_tv,max(TV))],…

'k-','linewidth',2)

xlabel('TV budgets'), ylabel('Sales of product')

title(['Sales=' num2str(mdl_tv.Coefficients.Estimate(1)) '+' ...

num2str(mdl_tv.Coefficients.Estimate(2)) '*TV',...

', R^2=' num2str(mdl_tv.Rsquared.Ordinary)])

Lines 15 to 28 in MLmaterials_L5\Ex_LinearRegression.m
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Exercise – Univariate Linear Regression
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• Information of the linear regression model

mdl_tv = 

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

Estimate       SE           tStat pValue
________    _________    ______    __________

(Intercept)  7.0326      0.45784     15.36    1.4063e-35

x1             0.047537    0.0026906    17.668    1.4674e-42

Number of observations: 200, Error degrees of freedom: 198

Root Mean Squared Error: 3.26

R-squared: 0.612,  Adjusted R-Squared: 0.61

F-statistic vs. constant model: 312, p-value = 1.47e-42



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Exercise – Multiple Linear Regression
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1. Is at least one of the predictors X1,X2, . . . , Xp useful in predicting the response?

2. Do all the predictors help to explain Y , or is only a subset of the predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict, and how 
accurate is our prediction?

• Regress "Sales" on "TV", “Radio", and “Newspaper" budgets

mdl_multiple = fitlm([TV,Radio,Newspaper],Sales)

𝒀 ≈ 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 +⋯+ 𝜷𝒑𝑿𝒑

Lines 31 to 34 in MLmaterials_L5\Ex_LinearRegression.m
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Exercise – Multiple Linear Regression
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• Information of the multiple linear regression model

mdl_multiple =

Linear regression model:

y ~ 1 + x1 + x2 + x3

Estimated Coefficients:

Estimate       SE      tStat pValue
__________    _________    ________    __________

(Intercept)        2.9389      0.31191     9.4223   1.2673e-17

x1              0.045765    0.0013949      32.809   1.51e-81

x2             0.18853    0.0086112      21.893    1.5053e-54

x3           -0.0010375     0.005871  -0.17671       0.85992

Number of observations: 200, Error degrees of freedom: 196

Root Mean Squared Error: 1.69

R-squared: 0.897,  Adjusted R-Squared: 0.896

F-statistic vs. constant model: 570, p-value = 1.58e-96
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Non-Linear Polynomial Regression
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p_d2=polyfit(horsepower,mpg,2); 

% residual sum of square

RSS=sum((polyval(p_d2,horsepower)…

-mpg).^2); 

% total sum of square

TSS=sum((mpg-mean(mpg)).^2); 

R_square_d2=1-RSS/TSS;

MLmaterials_L5\Auto.csv

MLmaterials_L5\Ex_PolyRegression.m

horsepower

m
p

g

𝒀 ≈ 𝜷𝟎 + 𝜷𝟏𝑿 + 𝜷𝟐𝑿
𝟐 +⋯+ 𝜷𝒑𝑿

𝒑
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Regression tree

Nonparametric 

Regression

14
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Parametric vs. Nonparametric
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• Parametric methods
• Such as the linear regression and polynomial regression.

• Pro: They are often easy to fit, because one need estimate only a small 
number of coefficients.

• Con: They make strong assumptions about the form of f(X).

• Nonparametric methods
• Such as the KNN regression, regression tree, and SVM regression

• They do not explicitly assume a parametric form for f(X), and thereby provide 
an alternative and more flexible approach for performing regression.



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Decision Trees

16

• Decision trees can be applied to both regression and classification
problems.

• Tree-based methods are simple and useful for interpretation.

• Combining a larger number of trees can often result in improvements in 
prediction accuracy.

• Bagging, random forests, and boosting.

Internal node (branch)

Terminal node (leaf)
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Hitters Dataset

17

• Major League Baseball Data for 322 players from 1986 and 1987 seasons.

• Salary: 1987 annual salary on opening day in thousands of dollars

• Years: Number of years in the major leagues

• Hits: Number of hits in 1986 (安打)

• RBI: Number of runs batted in in 1986 (打點)

• PutOuts: Number of put outs in 1986 (出局)

• Walks: Number of walks in 1986 (保送)

• Runs: Number of runs in 1986 (得分)

MLmaterials_L5\Hitters.csv
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Hitters Dataset
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• Preprocessing steps after reading Hitters.csv

• Converting data format to the Table array.

• Removing the players with missing Salary data.

• Log-transform of Salary to have a typical 
bell-shape distribution.

Lines 5 to 16 in 

MLmaterials_L5\Ex_RegressionTree.m
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Algorithm of Regression Tree
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1. Use recursive binary splitting to grow a large tree on the training 
data, stopping only when each terminal node has fewer than some 
minimum number of observations ('MinLeafSize').

2. Apply cost complexity pruning to the large tree in order to obtain 
a sequence of best subtrees, as a function of α ('PruneAlpha').

3. Return the subtree from Step 2 that corresponds to the chosen 
value of α. (prune)



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Algorithm of Regression Tree

20

• Recursive binary splitting

• Cost complexity pruning



𝒎=𝟏

𝑻



𝒙𝒊∈𝑹𝒎

𝒚𝒊 − ෝ𝒚𝑹𝒎
𝟐
+ 𝜶 𝑻



𝒙𝒊∈𝑹𝟏(𝒋,𝒔)

𝒚𝒊 − ෝ𝒚𝑹𝟏
𝟐
+ 

𝒙𝒊∈𝑹𝟐(𝒋,𝒔)

𝒚𝒊 − ෝ𝒚𝑹𝟐
𝟐

𝑹𝟏 𝒋, 𝒔 = 𝑿ห𝑿𝒋 < 𝒔 𝒂𝒏𝒅 𝑹𝟐 𝒋, 𝒔 = 𝑿ห𝑿𝒋 ≥ 𝒔

The jth predictor Cutpoint s to split the predictor space

Identify j and s to minimize: 

Given an α, prune the tree 

to minimize:

𝒂 𝒔𝒖𝒃𝒕𝒓𝒆𝒆 𝑻 ⊂ 𝑻𝟎

Number of terminal nodes
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Exercise – Data Separation
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• Separate data into training (70%) and test (30%) datasets

rng(0,'twister')  % For reproducibility

C = cvpartition(size(data,1),'holdout',0.30); % hold out 30% for test

dataTrain = data(C.training,:);

dataTest = data(C.test,:);

Lines 18 to 23 in 

MLmaterials_L5\Ex_RegressionTree.m

185 players (70%) for training

78 players (30%) for test
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Exercise – Regression Tree
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• [Method 1] Construct a regression tree using six variables/features

predictors={'Years','Hits','RBI','PutOuts','Walks','Runs'};

tree_6v = fitrtree(dataTrain,'Salary','PredictorNames',predictors,...

'OptimizeHyperparameters','all',...

'HyperparameterOptimizationOptions',...

struct('AcquisitionFunctionName','expected-improvement-plus','kfold',5));

view(tree_6v,'Mode','graph')

Lines 25 to 46 in 

MLmaterials_L5\Ex_RegressionTree.m
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Exercise – Regression Tree
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• [Method 1] Construct a regression tree using six variables/features

Lines 25 to 46 in MLmaterials_L5\Ex_RegressionTree.m
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Exercise – Tree Pruning
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• [Method 2] Prune the constructed regression tree to reduce the complexity

Lines 47 to 68 in MLmaterials_L5\Ex_RegressionTree.m

prunelevel=6;

tree_prune = prune(tree_6v,'level',prunelevel);

% prunealpha=0.03;

% tree_prune = prune(tree_6v,'alpha',prunealpha);

view(tree_prune,'Mode','graph')
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Exercise – Tree Pruning
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• [Method 2] Prune the constructed regression tree to reduce the complexity

Lines 47 to 68 in MLmaterials_L5\Ex_RegressionTree.m
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Exercise – Identify Key Variables
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• Variable/feature selection based on the importance scores

imp = predictorImportance(tree_6v);

figure; bar(imp);

title('Predictor Importance Estimates');

ylabel('Estimates'); xlabel('Predictors');

h = gca;

h.XTickLabel = tree_6v.PredictorNames;

h.XTickLabelRotation = 45;

h.TickLabelInterpreter = 'none';

Lines 69 to 81 in 

MLmaterials_L5\Ex_RegressionTree.m



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Exercise – Regression Tree
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• [Method 3] Construct a regression tree using key variables/features

predictors={'Years','Hits'};  % only use the two key variables/features 

tree_2v = fitrtree(dataTrain,'Salary','PredictorNames',predictors,...

'OptimizeHyperparameters','all',...

'HyperparameterOptimizationOptions',...

struct('AcquisitionFunctionName','expected-improvement-plus','kfold',5));

view(tree_2v,'Mode','graph')

Lines 82 to 102 in 

MLmaterials_L5\Ex_RegressionTree.m
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Exercise – Regression Tree
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• [Method 3] Construct a regression tree using key variables/features

Lines 82 to 102 in MLmaterials_L5\Ex_RegressionTree.m
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MATLAB Regression Learner

29

>> regressionLearner
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Contact:
盧家鋒 alvin4016@nycu.edu.tw

THE END

30


