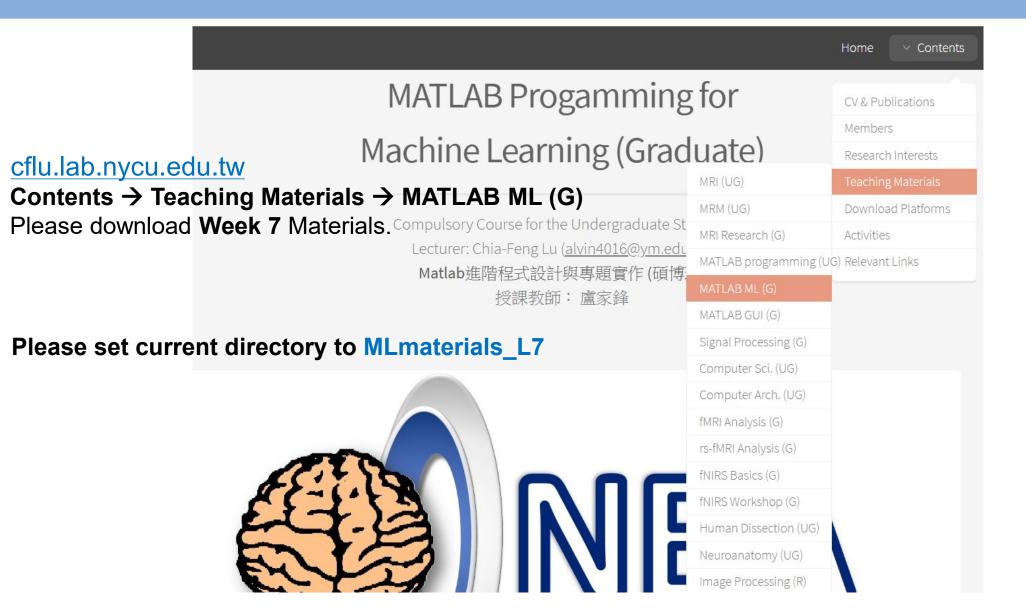


Classification: Decision Tree

MATLAB進階程式語言與實作

盧家鋒 Chia-Feng Lu, Ph.D. Department of Biomedical Imaging and Radiological Sciences, NYCU alvin4016@nycu.edu.tw

Teaching Materials



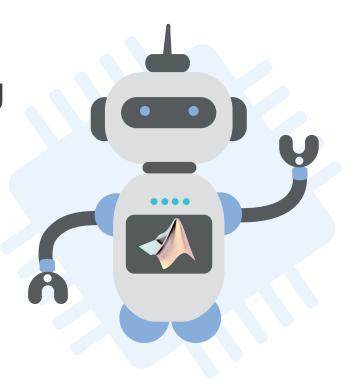
Contents in this Week

01 Classification Trees

Concepts, Pros & Cons

02 Bagging, Random Forests, Boosting

Tree voting, Sequential Learning



[Textbook 3]

- An Introduction to Statistical Learning, 2nd edition, 2013 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
- Online resources: https://github.com/rghan/ISLR
- Online resources: https://github.com/JWarmenhoven/ISLR-python
- Tree-based Methods (Ch.8)

References



Concepts, Pros & Cons

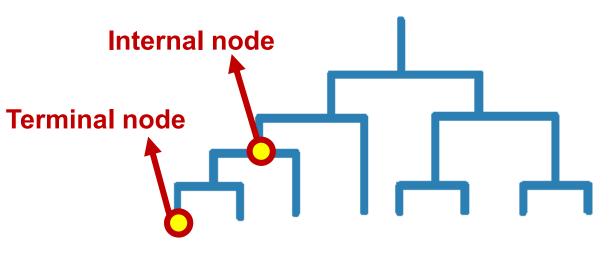
Decision Trees

Classification

- Prediction of a categorical response.
- we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs.
- The class proportions among the training observations that fall into to the same terminal node is of interest.

Regression

- Prediction of a quantitative value.
- The prediction is based on the mean response of the training observations that belong to the same terminal node.



Algorithm of Decision Tree

1. Use **recursive binary splitting** to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations ('MinLeafSize').

Tree growing

- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α ('PruneAlpha').
- 3. Return the subtree from Step 2 that corresponds to the chosen value of α . (prune)

Tree pruning

Decision Trees

Classification

• Prediction of a categorical response.

Classification error rate

 $\boldsymbol{E} = \mathbf{1} - \max_{\boldsymbol{k}}(\widehat{\boldsymbol{p}}_{\boldsymbol{m}\boldsymbol{k}})$

The proportion (probability) of training observations in the *m*th node/subgroup that are from the *k*th class.

Regression

• Prediction of a quantitative value.

Residual sum of squares (RSS):

To minimize:

$$\sum_{\substack{x_i \in R_1(j,s) \\ \text{true}}} \left(\begin{array}{c} y_i - \widehat{y}_{R_1} \end{array} \right)^2 + \sum_{\substack{x_i \in R_2(j,s) \\ \text{estimated}}} \left(\begin{array}{c} y_i - \widehat{y}_{R_2} \end{array} \right)^2$$

Classification error is not sufficiently sensitive for tree-growing.

Decision Trees

Classification

• Prediction of a categorical response.

Classification error rate

 $E = 1 - \max_{k}(\widehat{p}_{mk})$

Node purity is typically used to evaluate the quality of splitting.

Node purity (certainty) (1) Gini index: $G = \sum_{k=1}^{K} \widehat{p}_{mk} (1 - \widehat{p}_{mk})$ (2) Cross entropy: $D = -\sum_{k=1}^{K} \widehat{p}_{mk} \log \widehat{p}_{mk}$

Tree Growing

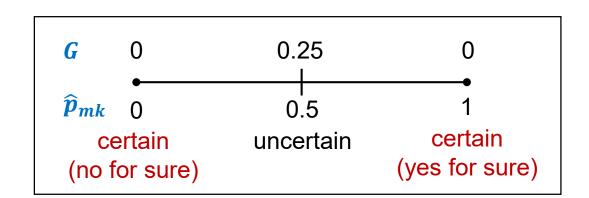
Classification

• Prediction of a categorical response.

(1) Gini index:

$$G = \sum_{k=1}^{K} \widehat{p}_{mk} (1 - \widehat{p}_{mk})$$

Gini index is referred to as a measure of node *purity*—a small Gini value indicates that a node contains predominantly observations from a single class.



Tree Growing

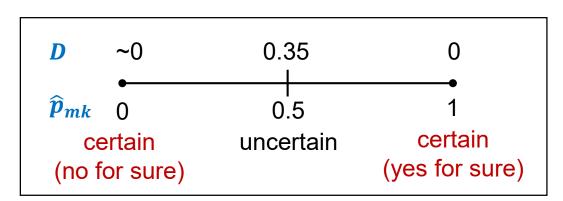
Classification

• Prediction of a categorical response.

(2) Cross entropy:

$$D = -\sum_{k=1}^{K} \widehat{p}_{mk} \log \widehat{p}_{mk}$$

Like the Gini index, the cross-entropy will take on a small value if the *m*th node is **pure**. In fact, it turns out that the Gini index and the cross-entropy are quite similar numerically.



Tree Pruning

Classification error rate

 $\boldsymbol{E} = \boldsymbol{1} - \max_{\boldsymbol{k}}(\widehat{\boldsymbol{p}}_{\boldsymbol{m}\boldsymbol{k}})$

Node purity (certainty)

(1) Gini index: $G = \sum_{k=1}^{K} \widehat{p}_{mk} (1 - \widehat{p}_{mk})$ (2) Cross entropy: $D = -\sum_{k=1}^{K} \widehat{p}_{mk} \log \widehat{p}_{mk}$

• Any of these three approaches might be used when *pruning* the tree, but the classification error rate is preferable if prediction accuracy of the final pruned tree is the goal.

Heart Dataset Including data from 303 patients.

- Age
- Sex
- **Chest Pain:** typical angina, atypical angina, non-anginal pain, asymptomatic
- **Rest BP:** resting blood pressure
- Chol: serum cholestoral in mg/dl
- **FBS:** fasting blood sugar > 120 mg/dl (1: true; 0: false)
- Rest ECG: 0: normal;1: having ST-T wave abnormality; 2: showing probable or definite left ventricular hypertrophy by Estes' criteria

MLmaterials_L7\Heart.csv

- Max HR: maximum heart rate achieved
- **ExAng:** exercise induced angina (1: yes; 0: no)
- Oldpeak: ST depression induced by exercise relative to rest
- Slope: the slope of the peak exercise ST segment
 1: upsloping; 2: flat; 3: downsloping
- **Ca:** number of major vessels (0-3) colored by flourosopy
- **Thal:** Thalium stress test (normal, fixed defect, reversable defect)

AHD (the predicted attribute, diagnosis based on angiography) (Yes: \geq 50% diameter narrowing; No: < 50% diameter narrowing;)

• Predict "AHD" (Yes or No)

- Should remove patients with missing data.
- Perform cvpartition to hold out 30% data.

predictors={'Age', 'Sex', 'ChestPain', 'RestBP', 'Chol', 'Fbs', 'RestECG', 'MaxHR', 'ExAng', 'Oldpeak', 'Slope', 'Ca', 'Thal'};

tree_allv = **fitctree**(dataTrain,'AHD','PredictorNames',predictors,...

'SplitCriterion', 'deviance', ... % 'deviance': cross entropy, 'gdi': Gini index

'OptimizeHyperparameters','all',...

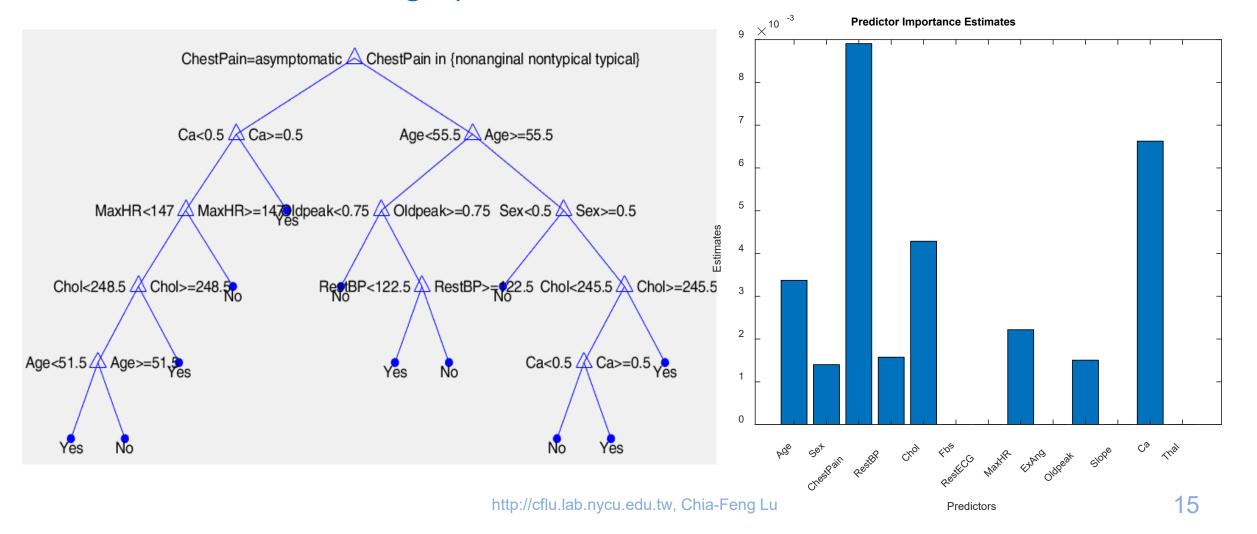
'HyperparameterOptimizationOptions',...

struct('UseParallel',true,'AcquisitionFunctionName','expected-improvementplus','kfold',5));

Lines 33 to 38 in MLmaterials_L7\Ex_ClassificationTree.m

view(tree_allv,'Mode','graph')

imp = predictorImportance(tree_allv);



AHD_predict=**predict**(tree_allv,dataTest); [cm,order] = **confusionmat**(dataTest.AHD,AHD_predict) accurarcy = trace(cm)/sum(cm(:))

cm =		accurarcy =	Confusion Matrix		True status	
		0.7640			Yes	No
39 12	9 29		Predicted status	Yes	True Positive (TP)	False Positive (FP) Type I error
MI motor		x ClassificationTrop m		No	False Negative (FN) Type II error	True Negative (TN)

MLmaterials_L7\Ex_ClassificationTree.m

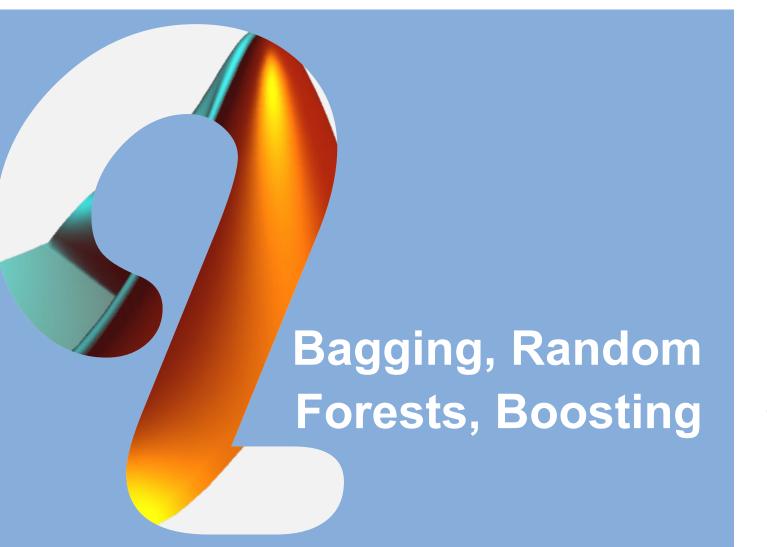
Tree-based Methods

Pros

- Trees are very easy to explain to people. (High interpretability)
- Decision trees are more closely mirror human decision-making strategy than other approaches.
- Trees can be displayed graphically, and are easily interpreted even by a non-expert (especially if they are small).
- Trees can easily handle qualitative predictors without the need to create dummy variables.

Cons

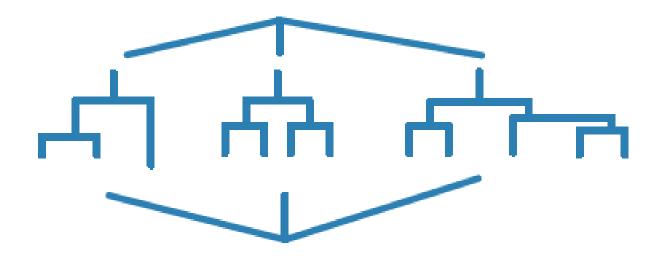
• Unfortunately, trees generally do not have the same level of predictive accuracy as some of the other regression and classification approaches.



Tree voting and sequential learning

Ensemble Methods of Tree

- Use trees as building blocks to construct more powerful prediction models.
- Several "weaker" decision trees (weak learner) are combined into a "stronger" ensemble.
- Bagging
- Random forests
- Boosting

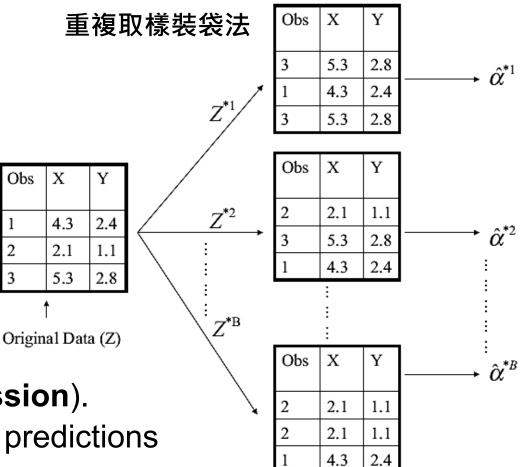


High Variance of Decision Trees

- The decision trees suffer from high variance.
 - if we split the training data into two parts at random, and fit a decision tree to both halves, the results that we get could be quite different.
- Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the variance of a statistical learning method.
 - To take many training sets from the population, build a separate prediction model using each training set, and average the resulting predictions.

Bagging

- Rather than repeatedly obtaining independent data sets from the population, bootstrap method instead obtains distinct data sets by repeatedly sampling observations from the original (single) data set with replacement.
- We then train decision trees on each bootstrapped training set
 - Average all the predictions (regression).
 - Take a majority vote among all the predictions (classification).



Out-of-Bag Error Estimation

- A very straightforward way to estimate the test error of a bagged model.
- One can show that on average, each bagged tree makes use of around two-thirds of the observations.
- The remaining one-third of the observations not used to fit a given bagged tree are referred to as the out-of-bag (OOB) observations.
- We can predict the response for an observation using each of the trees in which that observation was OOB.

Exercise – Bagging Tree

• Predict "AHD" (Yes or No)

- Should remove patients with missing data.
- Perform cvpartition to hold out 30% data.

B=100; % the number of bootstrapped/bagged training sets used t = templateTree('SplitCriterion', 'deviance', 'NumVariablesToSample','all');

tree_bag = fitcensemble(dataTrain,'AHD','PredictorNames',predictors,...
'Method','Bag',...

'NumLearningCycles',B,'Learners',t,...

'OptimizeHyperparameters',{'MinLeafSize','MaxNumSplits'},...

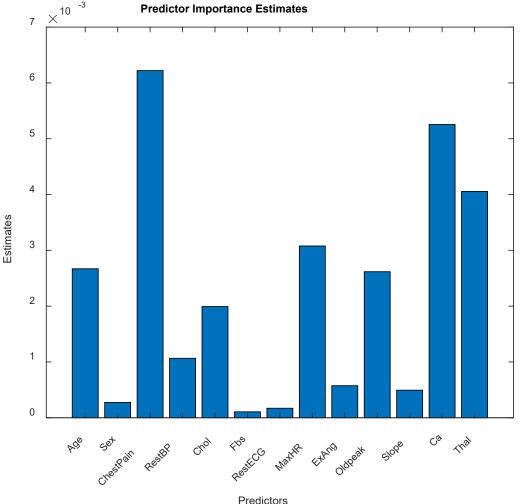
'HyperparameterOptimizationOptions',...

struct('UseParallel',true,'AcquisitionFunctionName','expected-improvementplus','kfold',5));

Lines 34 to 42 in MLmaterials_L7\Ex_BaggedTree.m

Variable Importance Measures

- Bagging improves prediction accuracy at the expense of interpretability.
 - It can be difficult to interpret the resulting model.
- Instead, one can obtain an overall summary of the importance of each predictor using the RSS (for bagging regression trees) or the Gini index (for bagging classification trees).



AHD_predict=predict(tree_bag,dataTest);
[cm,order] = confusionmat(dataTest.AHD,AHD_predict)
accurarcy = trace(cm)/sum(cm(:))

cm =		accurarcy = Confusion		1	True status	
		-	Matrix		Yes	No
42 11			Predicted status		True Positive (TP)	False Positive (FP) Type I error
MI mator	iale 17\E	RaggedTree m		No	False Negative (FN) Type II error	True Negative (TN)

MLmaterials_L7\Ex_BaggedTree.m

Random Forests

- Provide an improvement over bagged trees by way of a small tweak that *decorrelates* the trees.
- As in bagging, we build a number of decision trees on bootstrapped training samples.
- But when building these decision trees, each time a split in a tree is considered, only a random sample of *m* predictors is chosen as split candidates from the full set of *p* predictors.
 - Typically we choose $m \approx \sqrt{p}$.

Random Sample: Decorrelation

- The algorithm is *not even allowed* to consider a majority of the available predictors (ex: 4 out of the 13 predictors for the Heart data set).
- This process can avoid a strong predictors dominating the most of bagged trees.
- We can think of this process as *decorrelating the trees*, thereby making the average of the resulting trees less variable and hence more reliable.

Exercise – Bagging Tree

• Predict "AHD" (Yes or No)

- Should remove patients with missing data.
- Perform cvpartition to hold out 30% data.
- t = templateTree('SplitCriterion', 'deviance',...

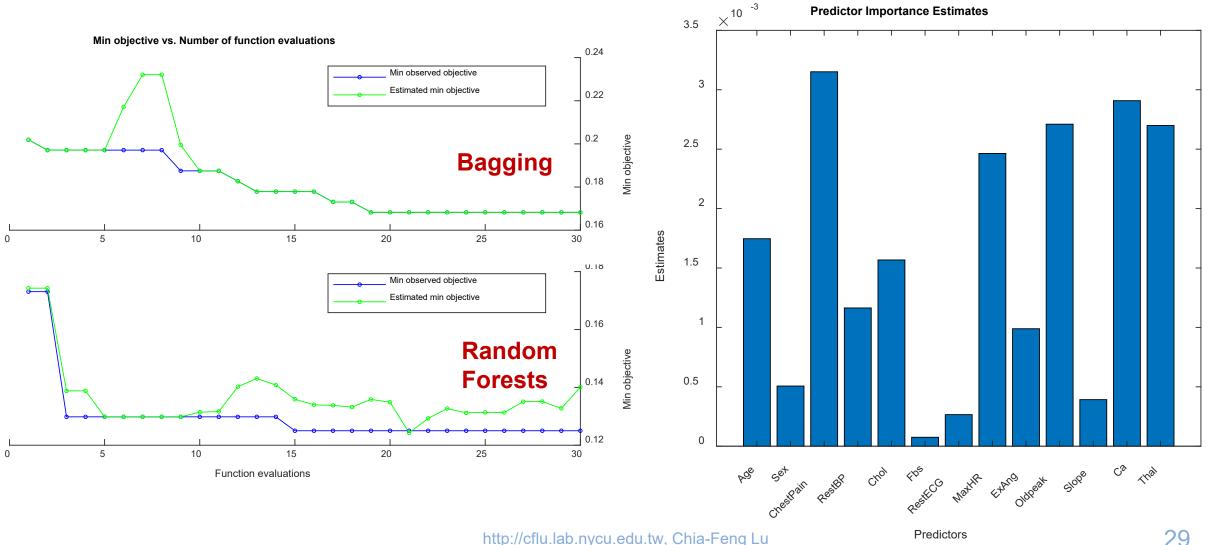
'NumVariablesToSample', sqrt(size(dataTest,2)-1),...

'Reproducible',true); % For reproducibility of random predictor selections

- tree_RF = **fitcensemble**(dataTrain,'AHD','PredictorNames',predictors,...
 - 'Method', 'Bag',...
 - 'NumLearningCycles',B,'Learners',t,...
 - 'OptimizeHyperparameters',{'MinLeafSize','MaxNumSplits'},...
 - 'HyperparameterOptimizationOptions',...

struct('UseParallel',true,'AcquisitionFunctionName','expected-improvementplus','kfold',5)); Lines 66 to 73 in MLmaterials_L7\Ex_BaggedTree.m

Variable Importance Measures



AHD_predict=**predict**(tree_RF,dataTest); [cm,order] = **confusionmat**(dataTest.AHD,AHD_predict) accurarcy = trace(cm)/sum(cm(:))

cm =		accurarcy =	Confusion Matrix		True status	
					Yes	No
41 10	7 0.8090 31		Predicted status	Yes	True Positive (TP)	False Positive (FP) Type I error
MI mator		BaggedTree m		No	False Negative (FN) Type II error	True Negative (TN)

MLmaterials_L7\Ex_BaggedTree.m

Boosting

- Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set.
- The trees are grown *sequentially*: each tree is grown using information from previously grown trees.
- The samples that classified incorrectly in the previous tree will be re-examed/emphasized in the next tree.

fitcensemble 'Method'

'AdaBoostM1'	Adaptive boosting
'AdaBoostM2'	Adaptive boosting
'GentleBoost'	Gentle adaptive boosting
'LogitBoost'	Adaptive logistic regression
'LPBoost'	Linear programming boosting — Requires Optimization Toolbox™
'RobustBoost'	Robust boosting — Requires Optimization Toolbox
'RUSBoost'	Random undersampling boosting
'TotalBoost'	Totally corrective boosting — Requires Optimization Toolbox

MLmaterials_L7\Ex_OptimizeEnsembleTree.m

Contact: 盧家鋒 alvin4016@nycu.edu.tw

Carseats Dataset Inc

Including simulated sales of child car seats at 400 different stores.

Sales

- Unit sales (in thousands)
- CompPrice
 - Price charged by competitor
- Income
 - Community income level (in thousands of dollars)
- Advertising
 - Local advertising budget for company (in thousands of dollars)
- Population
 - Population size in region (in thousands)
- Price
 - Price company charges for car seats

• ShelveLoc

- Bad, Good and Medium indicating the quality of the shelving location
- Age
 - Average age of the local population
- Education
 - Education level at each location
- Urban
 - Whether the store is in an urban or rural location
- US
 - Whether the store is in the US or not

MLmaterials_L7\Carseats.csv

https://rdrr.io/cran/ISLR/man/Carseats.html