
http://www.ym.edu.tw/~cflu, Chia-Feng Lu

盧家鋒 Chia-Feng Lu, Ph.D.
Department of Biomedical Imaging and
Radiological Sciences, NYCU
alvin4016@nycu.edu.tw

Neural Network
MATLAB進階程式語言與實作

function

datastore

table

trainNetwork

addLayers

fitcsvm

cvpartition

App Designer

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Teaching Materials

2

http://cflu.lab.nycu.edu.tw
Contents  Teaching Materials  MATLAB ML (G)

Please download Week 10 Materials.

Please set current directory to MLmaterials_L10

http://cflu.lab.nycu.edu.tw/

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Contents in this Week

3

Single-Layer Neural Network
Basic Concepts and Supervised Learning

01

Back-propagation Algorithm, Momentum,

Cross Entropy, Regularization

Multi-Layer Neural Network02

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

References

4

[Textbook 5]

• MATLAB Deep Learning With Machine Learning, Neural
Networks and Artificial Intelligence, 1st edition, 2017
Phil Kim

• Neural Network (Ch.2)

• Training of Multi-Layer Neural Network (Ch.3)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Basic Concepts and

Supervised Learning

Single-Layer

Neural Network

5

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

(Artificial) Neural Network

• The neural network imitates the mechanism of the brain. As the brain is
composed of connections of numerous neurons

• The information of the neural net is stored in the form of weights and bias.

6

node

input

output

weight

bias

activation

function

Brain Neural Network

Neuron cell Node

Connection of

neurons

Connection weight

Action potential Activation function

The arrows of the figure denote signal flow.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Neural Network

7

node

input

output

weight

bias

activation

function

𝒗 = 𝑾𝑿+ 𝒃
The weighted sum of inputs

𝒚 = 𝝋(𝒗)
Linear or nonlinear

transformation

Mathematical representations:

𝝋 𝒙 = 𝒙

𝝋 𝒙 =
𝟏

𝟏 + 𝒆−𝒙

sigmoid function

linear function

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Layers of Neural Network

8

hidden layershidden layer

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Why nonlinear activation function?

9

• The use of a linear function for the nodes negates the effect of adding a
layer.

• In this case, the multi-layer model is mathematically identical to a single-
layer neural network.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.

2. Enter the training data { input, correct output } into the neural network,
and calculate the error from the correct output.

3. Adjust the weights to reduce the error.

4. Repeat Steps 2-3 for all training data

5. Repeat Steps 2-4 until the error reaches an acceptable

tolerance level.

10

(All training data goes through

Steps 2-4 once, is called an epoch.)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Errors and Loss Function

11

di is the correct output of the output node i.

(ground truth)

• Let us define the loss function for output node 𝑦𝑖

𝑳𝒊 =
𝟏

𝟐
(𝒅𝒊−𝒚𝒊)

𝟐, 𝒚𝒊 = 𝝋 𝒗𝒊 , 𝒗𝒊 = σ𝒋=𝟏
𝒎 𝒘𝒊𝒋𝒙𝒋

where m is the numbers of input nodes

𝒆𝒊 = 𝒅𝒊 − 𝒚𝒊

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Steepest Gradient Decent

12

• We minimize the loss function 𝐿𝑖 w.r.t 𝑤𝑖𝑗
𝜕𝐿𝑖
𝜕𝑤𝑖𝑗

= 𝑒𝑖 −1
𝜕𝜑

𝜕𝑣𝑖

𝜕𝑣𝑖
𝜕𝑤𝑖𝑗

= −𝑒𝑖𝜑
′𝑥𝑗

• The steepest gradient decent method

𝑤𝑖𝑗
(𝑘+1)

= 𝑤𝑖𝑗
(𝑘)

− 𝛼
𝜕𝐿

𝜕𝑤𝑖𝑗

= 𝑤𝑖𝑗
(𝑘)

+ 𝛼𝜑′𝑒𝑖𝑥𝑗

• Or we may express the above equation as
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝛼𝜑′𝑒𝑖𝑥𝑗

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Generalized Delta Rule

• For an arbitrary activation function, the delta rule is expressed as

• The weight is adjusted in proportion to the input value, xj and the output
error, ei.

wij = The weight between the output node i and input node j

ei = The error of the output node i

vi = The weighted sum of the output node i

φ′ = The derivative of the activation function φ of the output node I

α = Learning rate (0 < α ≤ 1)

13

𝒘𝒊𝒋 ← 𝒘𝒊𝒋 + 𝜶𝜹𝒊𝒙𝒋

𝜹𝒊 = 𝝋′ 𝒗𝒊 𝒆𝒊

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

sigmoid function

𝝋 𝒙 =
𝟏

𝟏 + 𝒆−𝒙

Derivative of sigmoid function

14

𝜑′ 𝑥 =
𝑑(1 + 𝑒−𝑥)−1

𝑑𝑥
= − 1 + 𝑒−𝑥 −2 −𝑒−𝑥

=
1

1 + 𝑒−𝑥
1 −

1

1 + 𝑒−𝑥

= 𝜑 𝑥 (1 − 𝜑 𝑥)

𝒘𝒊𝒋 ← 𝒘𝒊𝒋 + 𝜶𝝋 𝒙 (𝟏 − 𝝋 𝒙)𝒆𝒊𝒙𝒋

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Schemes for Updating weights

• If we have 100 training data

15

Calculating the error for each

training data and adjusts the

weights immediately.

Each weight update is

calculated for all errors

of the training data.

It has speed from the SGD and

stability from the batch.

It is often utilized in Deep Learning.

Stochastic Gradient

Descent (SGD)
Batch Mini Batch

Weight

update

Average of

Weight

updates

Average of

Weight

updates

An

epoch

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example 1: Linearly Separable

16

• MLmaterials_L10\Single-layer\
• TestDeltaSGD.m

• DeltaSGD.m

• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 0}

{1, 0, 1, 1}

{1, 1, 1, 1}

responses

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

SGD vs. Batch

17

• TestDeltaSGD.m

• DeltaSGD.m

• TestDeltaBatch.m

• DeltaBatch.m

Average of

Weight

updates

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example 2: Linearly Inseparable

18

• MLmaterials_L10\Single-layer\
• TestDeltaSGD.m

• DeltaSGD.m

• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Short Summary

• The single-layer neural network can only solve linearly
separable problems. This is because the single-layer neural
network is a model that linearly divides the input data space.

• In order to overcome this limitation of the single-layer neural
network, we need more layers in the network.

19

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-propagation Algorithm,

Momentum, Cross Entropy,

Regularization

Multi-Layer

Neural Network

20

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm

• The previously introduced delta rule is ineffective for training of the multi-
layer neural network because the error is not defined in the hidden layers.

• Back-propagation algorithm provided a systematic method to determine
the error of the hidden nodes.

• Once the hidden layer errors are determined, the delta rule is applied to
adjust the weights.

21

the output error starts from the output layer

and moves backward until it reaches the

right next hidden layer to the input layer.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm

• The first thing to calculate is delta, δ, of each node：

𝑒1 = 𝑑1 − 𝑦1
𝛿1 = 𝜑′ 𝑣1 𝑒1

𝑒2 = 𝑑2 − 𝑦2
𝛿2 = 𝜑′ 𝑣2 𝑒2

𝜑′ is the derivative of the activation function of the output node.

𝑦𝑖 is the output from the output node.

𝑑𝑖 is the correct output from the training data.

𝑣𝑖 is the weighted sum of the corresponding node.

22

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm

• Since we have 𝛿1 and 𝛿2, let’s proceed leftward to the hidden nodes and
calculate the delta：

𝑒1
1
= 𝑤11

2
𝛿1 +𝑤21

2
𝛿2

𝛿1
1
= 𝜑′ 𝑣1

1
𝑒1
1

= 𝜑 𝑣1
1

(1 − 𝜑 𝑣1
1

)𝑒1
1

𝑒2
1
= 𝑤12

2
𝛿1 +𝑤22

2
𝛿2

𝛿2
1
= 𝜑′ 𝑣2

1
𝑒2
1

= 𝜑 𝑣2
1

(1 − 𝜑 𝑣2
1

)𝑒2
1

𝑣1
1

and 𝑣2
1

are the weighted sums of the forward signals at the respective nodes.

23

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Update of Weights

• Consider the weight 𝑤21
2

for example.

𝑤21
2
← 𝑤21

2
+ 𝛼𝛿2𝑦1

1

𝑦1
1

is the output of the first hidden node.

24

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Update of Weights

• The weight 𝑤11
1

of figure is adjusted as：

𝑤11
1
← 𝑤11

1
+ 𝛼𝛿1

1
𝑥1

𝑥1 is the output of the first input node.

25

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example: Back-Propagation

26

• MLmaterials_L10\Multi-layer\
• TestBackpropXOR.m

• BackpropXOR.m

• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One

hidden layer

One

output node

y

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Momentum

• The momentum, m, is a term that is added to the delta rule for
adjusting the weight.

• It acts similarly to physical momentum, which impedes the
reaction of the body to the external forces.

29

∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑚 = ∆𝑤𝑖𝑗 + 𝜷𝑚−

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 +𝑚

𝑚− = 𝑚

∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

𝑚− is the previous momentum

β is a positive constant that is less than 1.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018

Momentum

32

improves the learning stability.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example: Back-Propagation with Momentum

33

• MLmaterials_L10\Multi-layer\
• TestBackpropMmt.m

• BackpropMmt.m

• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One

hidden layer

One

output node

y

0.0038
0.9929
0.9919
0.0127

0.0060
0.9888
0.9891
0.0134

with momentum

without momentum

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Cost Function and Learning Rule

• There are two primary types of cost functions

𝐿 =෍

𝑖=1

𝑀
1

2
𝑑𝑖 − 𝑦𝑖

2

𝐿 =෍

𝑖=1

𝑀

−𝑑𝑖 ln 𝑦𝑖 − 1 − 𝑑𝑖 ln 1 − 𝑦𝑖

34

Cross entropy function
(tend to have better performance)

Quadratic function

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Cross Entropy Function

• This cost function is proportional to the error.

• The cross entropy function is much more sensitive to the error
than quadratic function.

35

d: correct output

y: estimated output

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example:

Back-Propagation using cross entropy

38

• MLmaterials_L10\Multi-layer\
• TestBackpropCE.m

• BackpropCE.m

• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One

hidden layer

One

output node

y
0.0038
0.9929
0.9919
0.0127

with momentum

0.00003
0.9999
0.9998
0.00036

Using cross entropy

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Regularization

• One of the primary approaches used to overcome overfitting is
making the model as simple as possible using regularization.

• In a mathematical sense, the essence of regularization is
adding the sum of the weights to the cost function.

40

𝐽 =
1

2
෍

𝑖=1

𝑀

𝑑𝑖 − 𝑦𝑖
2 + 𝝀

𝟏

𝟐
𝒘 𝟐

𝐽 =෍

𝑖=1

𝑀

−𝑑𝑖 ln 𝑦𝑖 − 1 − 𝑑𝑖 ln 1 − 𝑦𝑖 + 𝝀
𝟏

𝟐
𝒘 𝟐

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

nnstart

41

Iris dataset

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Contact:
盧家鋒 alvin4016@nycu.edu.tw

THE END

42

