function i

N
// 5
LAY

datastore

'—

/.
V4 [r——
o N
— \ N\
cvpartition e .

MATLABEPEENESHEEF

fitcsvm
App Designer

trainNetwork
table

addLayers

http://www.ym.edu.tw/~cflu, Chia-Feng Lu

Teaching Materials

Contents

MATLAB PI’O ga m m I ng for CV & Publications

Members
http://cflu.lab.nycu.edu.tw Machine Learning (Gradl,fi]e) _
Contents > Teaching Materials > MATLAB ML (G) T
Please download Week 10 Materials.ompulsory Course for the Undergraduate St o Qéseérch © Activities

Lecturer: Chia-Feng Lu (alvin4016@ym.edL

MATLAB programming (UG) Relevant Links

MatlabiEIEFEAG2E TEL HE B {F (BT,
e

MATLAB GUI (G)
Please set current directory to MLmaterials_L10 i
Computer Sci. (UG)
Computer Arch. (UG)
fMRI Analysis (G)

rs-fMRI Analysis (G)

fNIRS Basics (G)
t fNIRS Workshop (G)
Human Dissection (UG)
t Neuroanatomy (UG)
Image Processing (R) 2

http://cflu.lab.nycu.edu.tw/

Contents in this Week

01 single-Layer Neural Network

Basic Concepts and Supervised Learning

02 Multi-Layer Neural Network

Back-propagation Algorithm, Momentum,
Cross Entropy, Regularization

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 3

[Textbook 5]
- MATLAB Deep Learning With Machine Learning, Neural

Networks and Artificial Intelligence, 1st edition, 2017 S
Phil Kim MATLAB Deep
. Neural Network (Ch.2) Learning

With Machine Learning, Neural Networks
and Artificial Intelligence

« Training of Multi-Layer Neural Network (Ch.3)

Phil Kim

Apress’

Single-Layer

Neural Network

Basic Concepts and
Supervised Learning

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

(Artificial) Neural Network

 The neural network imitates the mechanism of the brain. As the brain is
composed of connections of numerous neurons

* The information of the neural net is stored in the form of weights and bias.

bias
Brain ___|Neural Network JEER b
Neuron cell Node X1 weight
Connection of Connection weight wy activation
neurons function
Action potential Activation function X2 Wy y
output
W3 node
X3 —

The arrows of the figure denote signal flow.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Neural Network

Mathematical representations:

bias
input b
X1 weight
w]’ activation
function
X2 W»
W3 node
x3/
|
v=WX+b>

The weighted sum of inputs

linear function

px) =x
y
tput 1----
outpu ()) 1
P T 1 e
y =) J
Linear or nonlinear _
transformation

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

sigmoid function

Layers of Neural Network

hidden layer hidden layers

Single-layer Neural Network (Shallow) Multi-layer Neural Network Deep Neural Network
Single-Layer Neural Network Input Layer - Output Layer
Multi-Layer Shallow Neural | Input Layer - Hidden Layer - Output
Neural Network | Network Layer
Deep Neural Input Layer - Hidden Layers - Output
Network Layers

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 8

Why nonlinear activation function?

* The use of a linear function for the nodes negates the effect of adding a

T R

1{'\23 53] 3'/3/;1 3 21 1
1 X/ 571 || 2 4}{2}{5 1}[1}{1}

g AN

117 92| |7

* In this case, the multi-layer model is mathematically identical to a single-
layer neural network.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 0

Supervised Learning of a Neural Network .

—

. Initialize the weights with adequate values.

2. Enter the training data { input, correct output } into the neural network,
and calculate the error from the correct output.

3. Adjust the weights to reduce the error.
4. Repeat Steps 2-3 for all training data
5. Repeat Steps 2-4 until the error reaches an acceptable Error ——
tolerance level. /
(All training data goes through Training Data :)
Steps 2-4 once, is called an epoch.) |input, correctoutputy [T PR sopma | oo E,?+
V4

Correct output
http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 10

Errors and Loss Function '

y e =d;—y;

d; is the correct output of the output node /.
(ground truth)

* Let us define the loss function for output node y;

1 m

L; = E(di_yi)zl yi = @), v; = j=1 WijX;j
where m is the numbers of input nodes

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 11

Steepest Gradient Decent

* We minimize the loss function L; w.r.t w;;

dL; (—1) do dv;
Owij ¢ avi aWU “i¥ x]
* The steepest gradient decent method
(k+1) _), (K) oL
l] l] —a 6Wij
S)+a¢e%

* Or we may express the above equation as
Wij — Wij + aga’el-xj

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Cw)

Generalized Delta Rule '

* For an arbitrary activation function, the delta rule is expressed as

Wij — Wij + aSix]-

d; = @' (v;)e;

» The weight is adjusted in proportion to the input value, x; and the output
error, e;.

w; = The weight between the output node i and input node |

e; = The error of the output node j

v; = The weighted sum of the output node /

@' = The derivative of the activation function ¢ of the output node /
a=Learningrate (0<a<1)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 13

Derivative of sigmoid function

d(1 + e™)1

0'(x) = ————— = (1 +e) (e ™)

B 1 . 1
14 ex 1+e*

= o)1 - ¢x))

wii < wi; + ap(x)(1 — o(x))e;x;

sigmoid function

1

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

14

Schemes for Updating weights

Stochastic Gradient
Descent (SGD)

I
update

An
epoch

Training Data
Calculating the error for each
training data and adjusts the
weights immediately.

Batch

Average of
___ Weight
updates

Training Data

Each weight update is
calculated for all errors

Mini Batch

Training Data

Average of
— Weight

updates

It has speed from the SGD and
stability from the batch.
v Of the training data. It is often utilized in Deep Learning.

Example 1: Linearly Separable

 MLmaterials_L10\Single-layer\

 TestDeltaSGD.m resPTnses .1
 DeltaSGD.m !
« Sigmoid.m {0,0,1, 0}
Voo T %
{0, 1,1, 0} ’ T
X :
1\W i
’ {1,0, 1, 1} :
/0\ /i\ ;-
Xo— W, y 00 00 X
{1,1,1,1}
W3
x3/

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 16

SGD vs. Batch

 TestDeltaSGD.m TestDeltaBatch.m
 DeltaSGD.m DeltaBatch.m
0.35
0 — S TE 11 — v o= Wy 04 SGD
_ = Yiemo] . s UYSE o [Batch | |
10 - = Blgmoldi+); 2 ¥ = Slgmold(v); %
i 13 o 0.25F
[- H
14 — e =d - ¥; = 0.9
= ® =d - 15— delta = y*(1-yi%e; L
13 — delta = j.?*lil-}?:l*e; 16 B 0.15 E
14 17 - dW = alpha*delta*x; Si'f‘ 0.1
15 — W = alpha*delta*x; 18 g |y
16 19 — dWsum = dWsum + dW; < 0.05 "%"’u.
17 — Wely + dwily; A= end
18 — W2y + A2y 21 — dWawg = dWsum / N;
)
19 — w2 dure 3
- S LIEIE 23 — wily = Wi ly + dWawgi 1); A\(:’ra.gﬁtof
- [end 24 — W2y = W2y o+ dWave(23; elg
=2l = “end 25 _ W) = W) + dWawve(39 updates
26 — ~end

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 17

Example 2: Linearly Inseparable

 MLmaterials_L10\Single-layer\
* TestDeltaXOR.m

responses

 DeltaSGD.m |
» Sigmoid.m {0, 0,1, 0}
{0,1,1, 1}
X
1\W
1 {1,0,1, 1}
X2 Wy y
{1,1,1, 0}
W3
x3/

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 18

Short Summary '

* The single-layer neural network can only solve linearly
separable problems. This is because the single-layer neural
network is a model that linearly divides the input data space.

* In order to overcome this limitation of the single-layer neural
network, we need more layers in the network.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 19

Multi-Layer

Neural Network | |
Back-propagation Algorithm,

Momentum, Cross Entropy,
Regularization

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

20

Back-Propagation Algorithm ‘

* The previously introduced delta rule is ineffective for training of the multi-
layer neural network because the error is not defined in the hidden layers.

- Back-propagation algorithm provided a systematic method to determine
the error of the hidden nodes.

* Once the hidden layer errors are determined, the delta rule is applied to
adjust the weights.

the output error starts from the output layer
and moves backward until it reaches the
right next hidden layer to the input layer.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 21

Back-Propagation Algorithm

* The first thing to calculate is delta, 0, of each node :

:)<—e1=d1—y1

@' is the derivative of the activation function of the output node.
y; is the output from the output node.

d; is the correct output from the training data.

v; is the weighted sum of the corresponding node.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 22

Back-Propagation Algorithm '

« Since we have 6, and §,, let’s proceed leftward to the hidden nodes and
calculate the delta :

Wy _51(1) Wﬁ) A6 =4 -y
7 e
i
i g
%) —22 =,
el(l) = Wl(i)51 + WZ(?62 ez(l) = W1(§)51 + W2(§)52
v _ o, D), D _ o, D) @)
0, —go(v1)31 5, —go(vz)ez
1 1 1 1 1 1
o (o) a-a (PPl = () (el

v and v{" are the weighted sums of the forward signals at the respective nodes.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 23

Update of Weights

* Consider the weight w21) for example.

o 34_ d, - Y,

52 :)4— dz —y2

(2) (2) (1)
y1) is the output of the first hidden node.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 24

Update of Weights

* The weight Wﬂ) of figure is adjusted as

Wl(i) « Wl(i) + a51(1)x1

x4 is the output of the first input node.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 25

Example: Back-Propagation

 MLmaterials_L10\Multi-layer\
* TestBackpropXOR.m

responses

« BackpropXOR.m !
» Sigmoid.m {0, 0,1, 0}
{0,1,1, 1}
{1,0,1, 1}
y
outp?r?ﬁode {1! 1! 1, 0}

One
hidden layer http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 26

« The momentum, m, is a term that is added to the delta rule for
adjusting the weight.

* |t acts similarly to physical momentum, which impedes the
reaction of the body to the external forces.

AWij = a6in

WL_] a lx] i m — AWU +ﬁm_

H H H Wij — Wij + m

m =m

m~ is the previous momentum
B is a positive constant that is less than 1.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 29

MOmentu IM improves the learning stability.

Avoiding Zig-Zagging with Momentum

Marble Rolling Down Hill

" 4 OPTIMUM
"’Ofos STARTING .
Staw POINT
Ps
STARTING \
9 IN FLAT REGION "MOMENTUM " (b) WITHOUT MOMENTUM
L}
1
GD GETS TRAPPED b
IN LOCAL OPTIMUM '.‘
Al
y STARTING OPTIMUM
WITHOUT
VALUE OF NEURAL NETWORK PARAMETER MOMENTUM POINT

(a) RELATIVE DIRECTIONS
Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018
http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 32

(c) WITH MOMENTUM

Example: Back-Propagation with Momentum ‘

 MLmaterials_L10\Multi-layer\

responses
* TestBackpropMmt.m | with momentum

 BackpropMmt.m ' '0.0038]
« Sigmoid.m {0,0,1,0} 0.9929
0.9919
{0,1,1, 1} 0.0127.

{1, O, 1’ 1} without momentum
y 0.0060]
One 09888

e 1,1,1,0

output nod { } 0.9891
10.0134.

One
hidden layer http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 33

Cost Function and Learning Rule

* There are two primary types of cost functions

1 2
E—2(d ¥)

M
1
z > (d; — v;)? Quadratic function

=1

a-y

L= Z{ —d;In(y;)) — (1 —d;))In(1 —y;)} Cross entropy function

i= (tend to have better performance)

 This cost function is proportional to the error.
» The cross entropy function is much more sensitive to the error than quadratic function.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 34

Training using the cross entropy

* The output and hidden layers employ different formulas of the
delta when the learning rule is based on the cross entropy and
the sigmoid function.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 38

Example: ‘
Back-Propagation using cross entrogp
 MLmaterials_L10\Multi-layer\

» TestBackpropCE.m resPT"ses
. BackpropCE.m I Using cross entropy
o : {0, 0, 1, 0} 0.00003
Sigmoid.m 0.0999
0.9998
0. 1. 1.15 10.00036.
{1,0,1, 1} with momentum
d 0.0038
outp?x’?ﬁode {1, 1, 1, 0} 09929
0.9919
10.0127.

One
hidden layer http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 39

Regularization '

* One of the primary approaches used to overcome overfitting is
making the model as simple as possible using regularization.

* In a mathematical sense, the essence of regularization is
adding the sum of the weights to the cost function.

M
1 1
J=3) i=y0? + Az lwl?
v 1=1
— ! 2
= ;{—di In(y) = (1= d) In(1 =y} + 2 [wl

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 41

‘Neural Network

Hidden Output

-Algorithms

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg)
Performance: Cross-Entropy (crossentropy)
Calculations: MEX

4

ris dataset

=N Hol =5

File Edit Wiew Insert Tools Desktop Window Help

Validation Checks: 0 &)

‘Progress

Epoch: 0 I 48 iterations 1000

Time: | 0:00:07

Performance: 0.469 _: 0.00

Gradient: 0223 [000127 | | 1.00e-06
[-—

Performance {plotperform}

Training State {plottrainstate)

| |
| |
l Error Histogram] {ploterrhist)
| l
| |

Confusion {plotconfusion)
Receiver Operating Characteristic | (plotroc)

%’ Opening Confusion Plot

Cross-Entropy (crossentropy)

10°

=)
A

3
ra

S
&

o
s

Best Validation Performance is 1.8268e-05 at epoch 42

Train
Validation

’ @ stop Training H @ Cancel]

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Output Class

Output Class

w

Training Confusion Matrix

35 0 0 100%
33.7% 0.0% 0.0% 0.0%
0 33 0 100%
0.0% 31.7% 0.0% 0.0%
0 1 35 97.2%
0.0% 1.0% 33.7% 2.8%
100% 97.1% 100% 99.0%
0.0% 2.9% 0.0% 1.0%

N 2 L)

Target Class
Test Confusion Matrix

7 0 0 100%
30.4% 0.0% 0.0% 0.0%
0 10 2 83.3%
0.0% 435% 8.7% 16.7%
0 0 4 100%
0.0% 0.0% 17.4% 0.0%
100%. 100% 66.7% 91.3%
0.0% 0.0% 33.3% 8.7%

N a2 >

Target Class

Output Class

Output Class

Validation Confusion Matrix

8 0 0 100%
34.8% 0.0% 0.0% 0.0%
0 6 0 100%
0.0% 26.1% 0.0% 0.0%
0 0 9 100%
0.0% 0.0% 39.1% 0.0%
100% 100% 100% 100%
0.0% 0.0% 0.0% 0.0%
N v >

Target Class

All Confusion Matrix

50 0 0 100%
33.3% 0.0% 0.0% 0.0%
0 49 2 96.1%
0.0% 32.7% 1.3% 3.9%
0 1 48 98.0%
0.0% 0.7% 32.0% 2.0%
100% 98.0% 96.0% 98.0%
0.0% 2.0% 4.0% 2.0%
N v >

Target Class

42

THE END

Contact:
&2 #% alvind016@nycu.edu.tw

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

43

	投影片編號 1
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	投影片編號 23
	投影片編號 24
	投影片編號 25
	投影片編號 26
	投影片編號 29
	投影片編號 32
	投影片編號 33
	投影片編號 34
	投影片編號 38
	投影片編號 39
	投影片編號 41
	投影片編號 42
	投影片編號 43

