
http://www.ym.edu.tw/~cflu, Chia-Feng Lu

Chia-Feng Lu, Ph.D.
Department of Biomedical Imaging and
Radiological Sciences, NYCU
alvin4016@nycu.edu.tw

Neural Network
MATLAB

function

datastore

table

trainNetwork

addLayers

fitcsvm

cvpartition

App Designer

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Teaching Materials

2

http://cflu.lab.nycu.edu.tw
Contents Ą Teaching Materials Ą MATLAB ML (G)

Please download Week 10 Materials.

Please set current directory to MLmaterials_L10

http://cflu.lab.nycu.edu.tw/

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Contents in this Week

3

Single-Layer Neural Network
Basic Concepts and Supervised Learning

01

Back-propagation Algorithm, Momentum,

Cross Entropy, Regularization

Multi-Layer Neural Network02

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

References

4

[Textbook 5]

ÅMATLAB Deep Learning With Machine Learning, Neural
Networks and Artificial Intelligence, 1st edition, 2017
Phil Kim

ÅNeural Network (Ch.2)

ÅTraining of Multi-Layer Neural Network (Ch.3)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Basic Concepts and

Supervised Learning

Single-Layer

Neural Network

5

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

(Artificial) Neural Network

ÅThe neural network imitates the mechanism of the brain. As the brain is
composed of connections of numerous neurons

ÅThe information of the neural net is stored in the form of weights and bias.

6

node

input

output

weight

bias

activation

function

Brain Neural Network

Neuron cell Node

Connection of

neurons

Connection weight

Action potential Activation function

The arrows of the figure denote signal flow.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Neural Network

7

node

input

output

weight

bias

activation

function

○ ╦╧ ╫
The weighted sum of inputs

◐ ⱴ○
Linear or nonlinear

transformation

Mathematical representations:

ⱴ● ●

ⱴ●
▄●

sigmoid function

linear function

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Layers of Neural Network

8

hidden layershidden layer

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Why nonlinear activation function?

9

ÅThe use of a linear function for the nodes negates the effect of adding a
layer.

ÅIn this case, the multi-layer model is mathematically identical to a single-
layer neural network.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.

2. Enter the training data { input, correct output } into the neural network,
and calculate the error from the correct output.

3. Adjust the weights to reduce the error.

4. Repeat Steps 2-3 for all training data

5. Repeat Steps 2-4 until the error reaches an acceptable

tolerance level.

10

(All training data goes through

Steps 2-4 once, is called an epoch.)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Errors and Loss Function

11

di is the correct output of the output node i.

(ground truth)

ÅLet us define the loss function for output node ώ

╛░ ▀░ ◐░ , ◐░ ⱴ○░ȟ○░ В▒
□ ◌░▒●▒

where m is the numbers of input nodes

▄░ ▀░ ◐░

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Steepest Gradient Decent

12

ÅWe minimize the loss function ὒw.r.t ύ
‬ὒ

‬ύ
Ὡ ρ

‬•

‬ὺ

‬ὺ

‬ύ
Ὡ•ὼ

ÅThe steepest gradient decent method

ύ ύ ‌

ύ ‌•Ὡὼ

ÅOr we may express the above equation as
ύ ᴺύ ‌•Ὡὼ

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Generalized Delta Rule

ÅFor an arbitrary activation function, the delta rule is expressed as

ÅThe weight is adjusted in proportion to the input value, xj and the output
error, ei.

wij = The weight between the output node i and input node j

ei = The error of the output node i

vi = The weighted sum of the output node i

űǋ= The derivative of the activation function ű of the output node I

Ŭ= Learning rate (0 < Ŭ Ò 1)

13

◌░▒N ◌░▒ ♪♯░●▒

♯░ ⱴ ○░▄░

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

sigmoid function

ⱴ●
▄●

Derivative of sigmoid function

14

• ὼ
Ὠρ Ὡ

Ὠὼ
ρ Ὡ Ὡ

ρ

ρ Ὡ
ρ

ρ

ρ Ὡ

•ὼ ρ •ὼ

◌░▒N ◌░▒ ♪ⱴ● ⱴ● ▄░●▒

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Schemes for Updating weights

ÅIf we have 100 training data

15

Calculating the error for each

training data and adjusts the

weights immediately.

Each weight update is

calculated for all errors

of the training data.

It has speed from the SGD and

stability from the batch.

It is often utilized in Deep Learning.

Stochastic Gradient

Descent (SGD)
Batch Mini Batch

Weight

update

Average of

Weight

updates

Average of

Weight

updates

An

epoch

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example 1: Linearly Separable

16

ÅMLmaterials_L10\Single-layer\
ÅTestDeltaSGD.m

ÅDeltaSGD.m

ÅSigmoid.m {0, 0, 1, 0}

{0, 1, 1, 0}

{1, 0, 1, 1}

{1, 1, 1, 1}

responses

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

SGD vs. Batch

17

ÅTestDeltaSGD.m

ÅDeltaSGD.m

ÅTestDeltaBatch.m

ÅDeltaBatch.m

Average of

Weight

updates

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example 2: Linearly Inseparable

18

ÅMLmaterials_L10\Single-layer\
ÅTestDeltaSGD.m

ÅDeltaSGD.m

ÅSigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Short Summary

ÅThe single-layer neural network can only solve linearly
separable problems. This is because the single-layer neural
network is a model that linearly divides the input data space.

ÅIn order to overcome this limitation of the single-layer neural
network, we need more layers in the network.

19

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-propagation Algorithm,

Momentum, Cross Entropy,

Regularization

Multi-Layer

Neural Network

20

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm

ÅThe previously introduced delta rule is ineffective for training of the multi-
layer neural network because the error is not defined in the hidden layers.

ÅBack-propagation algorithm provided a systematic method to determine
the error of the hidden nodes.

ÅOnce the hidden layer errors are determined, the delta rule is applied to
adjust the weights.

21

the output error starts from the output layer

and moves backward until it reaches the

right next hidden layer to the input layer.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm

ÅThe first thing to calculate is delta, ŭ, of each node

Ὡ Ὠ ώ
‏ •ᴂὺ Ὡ

Ὡ Ὠ ώ
‏ •ᴂὺ Ὡ

•ᴂis the derivative of the activation function of the output node.

ώ is the output from the output node.

Ὠ is the correct output from the training data.

ὺ is the weighted sum of the corresponding node.

22

