function e
.
// £
oS
b o =

datastore

D
cvpartition 7 =

MATLAB

28 S Sou e
iy 2 5L L
7 ed

fitcsvm
App Designer

trainNetwork
table

2

e

addLayers

http://www.ym.edu.tw/~cflu, Chia-Feng Lu

Teaching Materials

Contents

MATLAB Progamming for

Members

http://cflu.lab.nycu.edu.tw Machine Learning (Gradlﬂmai,e)
Contents A Teaching Materials A MATLAB ML (G) i

Please download Week 10 Materialsompulsory Course for the Undergraduate St
Lecturer: Chia-Feng Lu (alvin4016@ym.edL

MatlabZE[EE= GG T BB EE (EFE,

MRM (UG) Download Platforms

MRI Research (G) Activities

MATLAB programming (UG) Relevant Links

IR . R —
MATLAB GUI (G)
Please set current directory to MLmaterials L10 i ;.

Computer Sci. (UG)
Computer Arch. (UG)
fMRI Analysis (G)
rs-fMRI Analysis (G)

fNIRS Basics (G)
t fNIRS Workshop (G)
Human Dissection (UG)

t Neuroanatomy (UG)
Image Processing (R) 2

http://cflu.lab.nycu.edu.tw/

Contents In this Week

01 Single-Layer Neural Network

Basic Concepts and Supervised Learning

02 Multi-Layer Neural Network

Back-propagation Algorithm, Momentum,
Cross Entropy, Regularization

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 3

[Textbook 5]

A MATLAB Deep Learning With Machine Learning, Neural
Networks and Artificial Intelligence, 1st edition, 2017

Phil Kim
A Neural Network (Ch.2)
A Training of Multi-Layer Neural Network (Ch.3) T

MATLAB Deep

Learning

Apress’

)

Single-Layer
Neural Network

Basic Concepts and
Supervised Learning

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

(Artificial) Neural Network

AThe neural network imitates the mechanism of the brain. As the brain is
composed of connections of numerous neurons

AThe information of the neural net is stored in the form of weights and bias.

: _ bias
Neural Network b

Neuron cell Node X1 weight
Connection of Connection weight Wy activation
Neurons function
Action potential Activation function X2 W Y
output
W3 node
X3 —

The arrows of the figure denote signal flow.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu)

Neural Network

Mathematical representations:

linear function

blas v (o)
|nput
welg
activation
function
Xz W2 y
output
P v (o)
X3
q g O
O == é Linear or nonlinear
-I r transformation

The weighted sum of inputs

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

0
sigmoid function

Layers of Neural Network

hidden layer hidden layers

Single-layer Neural Network (Shallow) Multi-layer Neural Network Deep Neural Network
Single-Layer Neural Network Input Layer - Output Layer
Multi-Layer Shallow Neural | Input Layer - Hidden Layer - Output
Neural Network | Network Layer
Deep Neural Input Layer - Hidden Layers - Output
Network Layers

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 8

Why nonlinear activation function? ‘

AThe use of a linear function for the nodes negates the effect of adding a

O AR A
T T
= o[

Aln this case, the multi-layer model is mathematically identical to a single-
layer neural network.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 0

Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.

2. Enter the training data { input, correct output } into the neural network,
and calculate the error from the correct output.

3. Adjust the weights to reduce the error.
4. Repeat Steps 2-3 for all training data
5. Repeat Steps 2-4 until the error reaches an acceptable Efror ——
tolerance level. /
(All training data goes through Training Data ,)
StepS 2'4 OnCe, |S Ca"ed an epOCh) ||'|put’ Correct output} B Inplﬂ] WEIght Update T OUtDUt J?+
V4

Correct output
http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 10

Errors and Loss Function .

d; is the correct output of the output node I.
(ground truth)

S e) i v(ophoz Bz oy

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 11

Steepest Gradient Decent

AWe minimize the loss function 0 w.r.t 0 'r

oo g e

T 0 TOoTOU c(w)
AThe steepest gradient decent method .

0 0 e q
6 |+ Qo l
AOr we may express the above equation as
v N | e Qw

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 12

Generalized Delta Rule .

AFor an arbitrary activation function, the delta rule is expressed as

Dad Dop dfes

o v (O)m

AThe weight is adjusted in proportion to the input value, x, and the output
error, e..

w; = The weight between the output node I and input node |
e; = The error of the output node |

v; = The weighted sum of the output node |
G§Nf The derivative of

t llvati on
U Learning rate (0 <

e act
U O 1)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 13

Derivative of sigmoid function

-@p * (&) ! f

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 14

Schemes for Updating weights

Stochastic Gradient
Descent (SGD)

[I
update

An
epoch

Training Data
Calculating the error for each

training data and adjusts the
weights immediately.

Batch

Average of
___ Weight
updates

Training Data

Each weight update is
calculated for all errors

Mini Batch

Training Data

Average of
— Weight

updates

It has speed from the SGD and
stability from the batch.
wp Of the training data. It is often utilized in Deep Learning.

Example 1: Linearly Separable

AMLmaterials_L10\Single-layer\

ATestDeltaSGD.m SRS "
ADeltaSGD.m I
ASigmoid.m 10,0, 1, 0}
Por TR
{0,1, 1, 0} ’ 0
X1 i
\W :
1 {1,0, 1, 1} i
/0\ fi\ =
Xo— W, y 100 CTEE
{1,1,1, 1}
W3
x3/

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 16

SGD vs. Batch

ATestDeltaSGD.m ATestDeltaBatch.m
ADeltaSGD.m ADeltaBatch.m
0.35
o - v o= W 11 - v=wf:{;_ . 03 1:331
0 - = Slgmoid{v); 12 - = Slgmoldiw); %
13 o> 0.25 F
11 c :
14 —] =d - ¥; = 0.0
1= ® =d - 15 |= delta = w¥{l-v)%e; |=_“—’ B E
13 - delta = v*(1-vi*e; 16 5 0.15]
14 17 - dW = alpha*delta*x; ﬂé‘ 0.1
15 — dW = alpha*delta*x; 18 3:3_ ' 3
16 19 — dWsum = dWsum + 4W; < 0.05 ‘*"'*u.
17 - Wiy + dwily; L= end h — %"""";mwmm
18 — W2y + W2y 21 — dWavg = dWsum / N; Epoch
o
19 — i 3 dWe 3y
. d (33 + dW(3); al 1) - W L) + difave(1) Averqge of
R 24 — Wedy = W2y + dWawve(2): Weight
él - “end 25 - W3) = W3) + dVave(3); updates
26 — ~end

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 17

Example 2: Linearly Inseparable

AMLmaterials_L10\Single-layer\

ATestDeltaSGD.m
ADeltaSGD.m
ASigmoid.m

X1

responses

v
{0, 0, 1, 0}

{0,1,1, 1}

{1,0,1, 1}
X2 Wy y
3: {1,1, 1, 0}

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

18

Short Summary .

AThe single-layer neural network can only solve linearly
separable problems. This is because the single-layer neural
network is a model that linearly divides the input data space.

Aln order to overcome this limitation of the single-layer neural
network, we need more layers in the network.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 19

)

Multi-Layer
Neural Network

Back-propagation Algorithm,
Momentum, Cross Entropy,
Regularization

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

20

Back-Propagation Algorithm .

AThe previously introduced delta rule is ineffective for training of the multi-
layer neural network because the error is not defined in the hidden layers.

ABack-propagation algorithm provided a systematic method to determine
the error of the hidden nodes.

AOnce the hidden layer errors are determined, the delta rule is applied to
adjust the weights.

the output error starts from the output layer
and moves backward until it reaches the
right next hidden layer to the input layer.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 21

Back-Propagation Algorithm

22
Q Q Q Q o
T ed&)Q T e @)Q
« ats the derivative of the activation function of the output node.
w is the output from the output node.

Q is the correct output from the training data.
L is the weighted sum of the corresponding node.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu 22

