
http://www.ym.edu.tw/~cflu, Chia-Feng Lu

盧家鋒 Chia-Feng Lu, Ph.D.
Department of Biomedical Imaging and
Radiological Sciences, NYCU
alvin4016@nycu.edu.tw

Neural Network
MATLAB進階程式語言與實作

function

datastore

table
trainNetwork

addLayers

fitcsvm

cvpartition

App Designer

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Teaching Materials

2

http://cflu.lab.nycu.edu.tw
Contents  Teaching Materials  MATLAB ML (G)
Please download Week 10 Materials.

Please set current directory to MLmaterials_L10

http://cflu.lab.nycu.edu.tw/

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Contents in this Week

3

Single-Layer Neural Network
Basic Concepts and Supervised Learning

01

Back-propagation Algorithm, Momentum,
Cross Entropy, Regularization

Multi-Layer Neural Network02

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

References

4

[Textbook 5]
• MATLAB Deep Learning With Machine Learning, Neural

Networks and Artificial Intelligence, 1st edition, 2017
Phil Kim

• Neural Network (Ch.2)
• Training of Multi-Layer Neural Network (Ch.3)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Basic Concepts and
Supervised Learning

Single-Layer
Neural Network

5

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

(Artificial) Neural Network
• The neural network imitates the mechanism of the brain. As the brain is

composed of connections of numerous neurons

• The information of the neural net is stored in the form of weights and bias.

6

node

input

output

weight

bias

activation
function

Brain Neural Network
Neuron cell Node
Connection of
neurons

Connection weight

Action potential Activation function

The arrows of the figure denote signal flow.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Neural Network

7

node

input

output

weight

bias

activation
function

𝒗𝒗 = 𝑾𝑾𝑾𝑾 + 𝒃𝒃
The weighted sum of inputs

𝒚𝒚 = 𝝋𝝋(𝒗𝒗)
Linear or nonlinear

transformation

Mathematical representations:

𝝋𝝋 𝒙𝒙 = 𝒙𝒙

𝝋𝝋 𝒙𝒙 =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆−𝒙𝒙

sigmoid function

linear function

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Layers of Neural Network

8

hidden layershidden layer

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Why nonlinear activation function?

9

• The use of a linear function for the nodes negates the effect of adding a
layer.

• In this case, the multi-layer model is mathematically identical to a single-
layer neural network.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.
2. Enter the training data { input, correct output } into the neural network,

and calculate the error from the correct output.
3. Adjust the weights to reduce the error.
4. Repeat Steps 2-3 for all training data
5. Repeat Steps 2-4 until the error reaches an acceptable

tolerance level.

10

(All training data goes through
Steps 2-4 once, is called an epoch.)

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Errors and Loss Function

11

di is the correct output of the output node i.
(ground truth)

• Let us define the loss function for output node 𝑦𝑦𝑖𝑖
𝑳𝑳𝒊𝒊 = 𝟏𝟏

𝟐𝟐
(𝒅𝒅𝒊𝒊−𝒚𝒚𝒊𝒊)𝟐𝟐, 𝒚𝒚𝒊𝒊 = 𝝋𝝋 𝒗𝒗𝒊𝒊 , 𝒗𝒗𝒊𝒊 = ∑𝒋𝒋=𝟏𝟏𝒎𝒎 𝒘𝒘𝒊𝒊𝒊𝒊𝒙𝒙𝒋𝒋

where m is the numbers of input nodes

𝒆𝒆𝒊𝒊 = 𝒅𝒅𝒊𝒊 − 𝒚𝒚𝒊𝒊

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Steepest Gradient Decent

12

• We minimize the loss function 𝐿𝐿𝑖𝑖 w.r.t 𝑤𝑤𝑖𝑖𝑖𝑖
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑒𝑒𝑖𝑖 −1
𝜕𝜕𝜑𝜑
𝜕𝜕𝑣𝑣𝑖𝑖

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= −𝑒𝑒𝑖𝑖𝜑𝜑′𝑥𝑥𝑗𝑗

• The steepest gradient decent method
𝑤𝑤𝑖𝑖𝑖𝑖

(𝑘𝑘+1) = 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘) − 𝛼𝛼 𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘) + 𝛼𝛼𝜑𝜑′𝑒𝑒𝑖𝑖𝑥𝑥𝑗𝑗

• Or we may express the above equation as
𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝛼𝛼𝜑𝜑′𝑒𝑒𝑖𝑖𝑥𝑥𝑗𝑗

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Generalized Delta Rule
• For an arbitrary activation function, the delta rule is expressed as

• The weight is adjusted in proportion to the input value, xj and the output
error, ei.

wij = The weight between the output node i and input node j
ei = The error of the output node i
vi = The weighted sum of the output node i
φ′ = The derivative of the activation function φ of the output node I
α = Learning rate (0 < α ≤ 1)

13

𝒘𝒘𝒊𝒊𝒊𝒊 ← 𝒘𝒘𝒊𝒊𝒊𝒊 + 𝜶𝜶𝜹𝜹𝒊𝒊𝒙𝒙𝒋𝒋

𝜹𝜹𝒊𝒊 = 𝝋𝝋′ 𝒗𝒗𝒊𝒊 𝒆𝒆𝒊𝒊

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

sigmoid function

𝝋𝝋 𝒙𝒙 =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆−𝒙𝒙

Derivative of sigmoid function

14

𝜑𝜑′ 𝑥𝑥 =
𝑑𝑑(1 + 𝑒𝑒−𝑥𝑥)−1

𝑑𝑑𝑑𝑑
= − 1 + 𝑒𝑒−𝑥𝑥 −2 −𝑒𝑒−𝑥𝑥

=
1

1 + 𝑒𝑒−𝑥𝑥
1 −

1
1 + 𝑒𝑒−𝑥𝑥

= 𝜑𝜑 𝑥𝑥 (1 − 𝜑𝜑 𝑥𝑥)

𝒘𝒘𝒊𝒊𝒊𝒊 ← 𝒘𝒘𝒊𝒊𝒊𝒊 + 𝜶𝜶𝜶𝜶 𝒙𝒙 (𝟏𝟏 − 𝝋𝝋 𝒙𝒙)𝒆𝒆𝒊𝒊𝒙𝒙𝒋𝒋

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Schemes for Updating weights

15

Calculating the error for each
training data and adjusts the

weights immediately.

Each weight update is
calculated for all errors

of the training data.

It has speed from the SGD and
stability from the batch.

It is often utilized in Deep Learning.

Stochastic Gradient
Descent (SGD)

Batch Mini Batch

Weight
update

Average of
Weight
updates

Average of
Weight
updates

An
epoch

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example 1: Linearly Separable

16

• MLmaterials_L10\Single-layer\
• TestDeltaSGD.m
• DeltaSGD.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 0}

{1, 0, 1, 1}

{1, 1, 1, 1}

responses

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

SGD vs. Batch

17

• TestDeltaSGD.m
• DeltaSGD.m

• TestDeltaBatch.m
• DeltaBatch.m

Average of
Weight
updates

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example 2: Linearly Inseparable

18

• MLmaterials_L10\Single-layer\
• TestDeltaXOR.m
• DeltaSGD.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Short Summary
• The single-layer neural network can only solve linearly

separable problems. This is because the single-layer neural
network is a model that linearly divides the input data space.

• In order to overcome this limitation of the single-layer neural
network, we need more layers in the network.

19

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-propagation Algorithm,
Momentum, Cross Entropy,
Regularization

Multi-Layer
Neural Network

20

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm
• The previously introduced delta rule is ineffective for training of the multi-

layer neural network because the error is not defined in the hidden layers.
• Back-propagation algorithm provided a systematic method to determine

the error of the hidden nodes.
• Once the hidden layer errors are determined, the delta rule is applied to

adjust the weights.

21

the output error starts from the output layer
and moves backward until it reaches the
right next hidden layer to the input layer.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm
• The first thing to calculate is delta, δ, of each node：

𝑒𝑒1 = 𝑑𝑑1 − 𝑦𝑦1
𝛿𝛿1 = 𝜑𝜑′ 𝑣𝑣1 𝑒𝑒1

𝑒𝑒2 = 𝑑𝑑2 − 𝑦𝑦2
𝛿𝛿2 = 𝜑𝜑𝜑 𝑣𝑣2 𝑒𝑒2

𝜑𝜑′ is the derivative of the activation function of the output node.
𝑦𝑦𝑖𝑖 is the output from the output node.
𝑑𝑑𝑖𝑖 is the correct output from the training data.
𝑣𝑣𝑖𝑖 is the weighted sum of the corresponding node.

22

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Back-Propagation Algorithm
• Since we have 𝛿𝛿1 and 𝛿𝛿2, let’s proceed leftward to the hidden nodes and

calculate the delta：

𝑒𝑒1
1 = 𝑤𝑤11

2 𝛿𝛿1 + 𝑤𝑤21
2 𝛿𝛿2

𝛿𝛿1
1 = 𝜑𝜑′ 𝑣𝑣1

1 𝑒𝑒1
1

= 𝜑𝜑 𝑣𝑣1
1 (1 − 𝜑𝜑 𝑣𝑣1

1)𝑒𝑒1
1

𝑒𝑒2
1 = 𝑤𝑤12

2 𝛿𝛿1 + 𝑤𝑤22
2 𝛿𝛿2

𝛿𝛿2
1 = 𝜑𝜑′ 𝑣𝑣2

1 𝑒𝑒2
1

= 𝜑𝜑 𝑣𝑣2
1 (1 − 𝜑𝜑 𝑣𝑣2

1)𝑒𝑒2
1

𝑣𝑣1
1 and 𝑣𝑣2

1 are the weighted sums of the forward signals at the respective nodes.
23

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Update of Weights
• Consider the weight 𝑤𝑤21

2 for example.

𝑤𝑤21
2 ← 𝑤𝑤21

2 + 𝛼𝛼𝛿𝛿2𝑦𝑦1
1

𝑦𝑦1
1 is the output of the first hidden node.

24

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Update of Weights
• The weight 𝑤𝑤11

1 of figure is adjusted as：

𝑤𝑤11
1 ← 𝑤𝑤11

1 + 𝛼𝛼𝛿𝛿1
1 𝑥𝑥1

𝑥𝑥1 is the output of the first input node.

25

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example: Back-Propagation

26

• MLmaterials_L10\Multi-layer\
• TestBackpropXOR.m
• BackpropXOR.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One
hidden layer

One
output node

y

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Momentum
• The momentum, m, is a term that is added to the delta rule for

adjusting the weight.
• It acts similarly to physical momentum, which impedes the

reaction of the body to the external forces.

29

∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛿𝛿𝑖𝑖𝑥𝑥𝑗𝑗
𝑚𝑚 = ∆𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜷𝜷𝑚𝑚−

𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑚𝑚
𝑚𝑚− = 𝑚𝑚

∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛿𝛿𝑖𝑖𝑥𝑥𝑗𝑗
𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + ∆𝑤𝑤𝑖𝑖𝑖𝑖

𝑚𝑚− is the previous momentum
β is a positive constant that is less than 1.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Avoiding Zig-Zagging with Momentum
Marble Rolling Down Hill

Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018

Momentum

32

improves the learning stability.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example: Back-Propagation with Momentum

33

• MLmaterials_L10\Multi-layer\
• TestBackpropMmt.m
• BackpropMmt.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One
hidden layer

One
output node

y

0.0038
0.9929
0.9919
0.0127

0.0060
0.9888
0.9891
0.0134

with momentum

without momentum

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Cost Function and Learning Rule
• There are two primary types of cost functions

𝐿𝐿 = �
𝑖𝑖=1

𝑀𝑀
1
2
𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

𝐿𝐿 = �
𝑖𝑖=1

𝑀𝑀

−𝑑𝑑𝑖𝑖 ln 𝑦𝑦𝑖𝑖 − 1 − 𝑑𝑑𝑖𝑖 ln 1 − 𝑦𝑦𝑖𝑖

34

Cross entropy function
(tend to have better performance)

Quadratic function

• This cost function is proportional to the error.
• The cross entropy function is much more sensitive to the error than quadratic function.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Training using the cross entropy

38

• The output and hidden layers employ different formulas of the
delta when the learning rule is based on the cross entropy and
the sigmoid function.

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example:
Back-Propagation using cross entropy

39

• MLmaterials_L10\Multi-layer\
• TestBackpropCE.m
• BackpropCE.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One
hidden layer

One
output node

y
0.0038
0.9929
0.9919
0.0127

with momentum

0.00003
0.9999
0.9998

0.00036

Using cross entropy

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Regularization
• One of the primary approaches used to overcome overfitting is

making the model as simple as possible using regularization.

• In a mathematical sense, the essence of regularization is
adding the sum of the weights to the cost function.

41

𝐽𝐽 =
1
2
�
𝑖𝑖=1

𝑀𝑀

𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 + 𝝀𝝀
𝟏𝟏
𝟐𝟐

𝒘𝒘 𝟐𝟐

𝐽𝐽 = �
𝑖𝑖=1

𝑀𝑀

−𝑑𝑑𝑖𝑖 ln 𝑦𝑦𝑖𝑖 − 1 − 𝑑𝑑𝑖𝑖 ln 1 − 𝑦𝑦𝑖𝑖 + 𝝀𝝀
𝟏𝟏
𝟐𝟐

𝒘𝒘 𝟐𝟐

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

nnstart

42

1 2 3

Target Class

1

2

3

O
ut

pu
t C

la
ss

Training Confusion Matrix

35

33.7%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

33

31.7%

1

1.0%

97.1%

2.9%

0

0.0%

0

0.0%

35

33.7%

100%

0.0%

100%

0.0%

100%

0.0%

97.2%

2.8%

99.0%

1.0%

1 2 3

Target Class

1

2

3

O
ut

pu
t C

la
ss

Validation Confusion Matrix

8

34.8%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

6

26.1%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

9

39.1%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

1 2 3

Target Class

1

2

3

O
ut

pu
t C

la
ss

Test Confusion Matrix

7

30.4%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

10

43.5%

0

0.0%

100%

0.0%

0

0.0%

2

8.7%

4

17.4%

66.7%

33.3%

100%

0.0%

83.3%

16.7%

100%

0.0%

91.3%

8.7%

1 2 3

Target Class

1

2

3

O
ut

pu
t C

la
ss

All Confusion Matrix

50

33.3%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

49

32.7%

1

0.7%

98.0%

2.0%

0

0.0%

2

1.3%

48

32.0%

96.0%

4.0%

100%

0.0%

96.1%

3.9%

98.0%

2.0%

98.0%

2.0%

Iris dataset

http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Contact:
盧家鋒 alvin4016@nycu.edu.tw

THE END

43

	投影片編號 1
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	投影片編號 23
	投影片編號 24
	投影片編號 25
	投影片編號 26
	投影片編號 29
	投影片編號 32
	投影片編號 33
	投影片編號 34
	投影片編號 38
	投影片編號 39
	投影片編號 41
	投影片編號 42
	投影片編號 43

