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Teaching Materials
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Contents Ą Teaching Materials Ą MATLAB ML (G)

Please download Week 10 Materials.

Please set current directory to MLmaterials_L10

http://cflu.lab.nycu.edu.tw/
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Contents in this Week
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Single-Layer Neural Network
Basic Concepts and Supervised Learning
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Back-propagation Algorithm, Momentum, 

Cross Entropy, Regularization

Multi-Layer Neural Network02
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Basic Concepts and 

Supervised Learning

Single-Layer 

Neural Network
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(Artificial) Neural Network

ÅThe neural network imitates the mechanism of the brain. As the brain is 
composed of connections of numerous neurons

ÅThe information of the neural net is stored in the form of weights and bias.
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Neural Network
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The weighted sum of inputs

◐ ⱴ○
Linear or nonlinear 

transformation

Mathematical representations:
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Layers of Neural Network
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Why nonlinear activation function?
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ÅThe use of a linear function for the nodes negates the effect of adding a 
layer. 

ÅIn this case, the multi-layer model is mathematically identical to a single-
layer neural network.
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Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.

2. Enter the training data { input, correct output } into the neural network, 
and calculate the error from the correct output.

3. Adjust the weights to reduce the error.

4. Repeat Steps 2-3 for all training data

5. Repeat Steps 2-4 until the error reaches an acceptable 

tolerance level.
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(All training data goes through 

Steps 2-4 once, is called an epoch.)
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Errors and Loss Function
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di is the correct output of the output node i.

(ground truth)

ÅLet us define the loss function for output node ώ

╛░ ▀░ ◐░ ,            ◐░ ⱴ○░ȟ○░ В▒
□ ◌░▒●▒

where m is the numbers of input nodes

▄░ ▀░ ◐░
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Steepest Gradient Decent
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ÅWe minimize the loss function ὒw.r.t ύ
‬ὒ

‬ύ
Ὡ ρ

‬•

‬ὺ

‬ὺ

‬ύ
Ὡ•ὼ

ÅThe steepest gradient decent method

ύ ύ ‌

ύ ‌•Ὡὼ

ÅOr we may express the above equation as
ύ ᴺύ ‌•Ὡὼ
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Generalized Delta Rule 

ÅFor an arbitrary activation function, the delta rule is expressed as 

ÅThe weight is adjusted in proportion to the input value, xj and the output 
error, ei.

wij = The weight between the output node i and input node j

ei = The error of the output node i

vi = The weighted sum of the output node i

űǋ= The derivative of the activation function ű of the output node I

Ŭ= Learning rate ( 0 < Ŭ Ò 1)
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sigmoid function

ⱴ●
▄●

Derivative of sigmoid function
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Schemes for Updating weights

ÅIf we have 100 training data 
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Calculating the error for each 

training data and adjusts the 

weights immediately.

Each weight update is 

calculated for all errors 

of the training data.

It has speed from the SGD and 

stability from the batch.

It is often utilized in Deep Learning.
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Example 1: Linearly Separable
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ÅMLmaterials_L10\Single-layer\
ÅTestDeltaSGD.m

ÅDeltaSGD.m

ÅSigmoid.m {0, 0, 1, 0}

{0, 1, 1, 0}

{1, 0, 1, 1}

{1, 1, 1, 1}

responses
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SGD vs. Batch
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ÅTestDeltaSGD.m

ÅDeltaSGD.m

ÅTestDeltaBatch.m

ÅDeltaBatch.m

Average of 

Weight 

updates
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Example 2: Linearly Inseparable
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ÅMLmaterials_L10\Single-layer\
ÅTestDeltaSGD.m

ÅDeltaSGD.m

ÅSigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses
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Short Summary

ÅThe single-layer neural network can only solve linearly 
separable problems. This is because the single-layer neural 
network is a model that linearly divides the input data space.

ÅIn order to overcome this limitation of the single-layer neural 
network, we need more layers in the network.

19
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Back-propagation Algorithm,

Momentum, Cross Entropy, 

Regularization

Multi-Layer 

Neural Network
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Back-Propagation Algorithm

ÅThe previously introduced delta rule is ineffective for training of the multi-
layer neural network because the error is not defined in the hidden layers.

ÅBack-propagation algorithm provided a systematic method to determine 
the error of the hidden nodes. 

ÅOnce the hidden layer errors are determined, the delta rule is applied to 
adjust the weights.

21

the output error starts from the output layer 

and moves backward until it reaches the 

right next hidden layer to the input layer.
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Back-Propagation Algorithm

ÅThe first thing to calculate is delta, ŭ, of each node

Ὡ Ὠ ώ
‏ •ᴂὺ Ὡ

Ὡ Ὠ ώ
‏ •ᴂὺ Ὡ

•ᴂis the derivative of the activation function of the output node.

ώ is the output from the output node.

Ὠ is the correct output from the training data.

ὺ is the weighted sum of the corresponding node.
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