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Teaching Materials
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http://cflu.lab.nycu.edu.tw
Contents  Teaching Materials  MATLAB ML (G)
Please download Week 10 Materials.

Please set current directory to MLmaterials_L10

http://cflu.lab.nycu.edu.tw/
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Contents in this Week
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Single-Layer Neural Network
Basic Concepts and Supervised Learning
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Back-propagation Algorithm, Momentum, 
Cross Entropy, Regularization

Multi-Layer Neural Network02
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Basic Concepts and 
Supervised Learning

Single-Layer 
Neural Network

5
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(Artificial) Neural Network
• The neural network imitates the mechanism of the brain. As the brain is 

composed of connections of numerous neurons

• The information of the neural net is stored in the form of weights and bias.

6
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The arrows of the figure denote signal flow.
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Neural Network

7

node

input

output

weight

bias

activation 
function

𝒗𝒗 = 𝑾𝑾𝑾𝑾 + 𝒃𝒃
The weighted sum of inputs

𝒚𝒚 = 𝝋𝝋(𝒗𝒗)
Linear or nonlinear 

transformation

Mathematical representations:

𝝋𝝋 𝒙𝒙 = 𝒙𝒙

𝝋𝝋 𝒙𝒙 =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆−𝒙𝒙

sigmoid function

linear function
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Layers of Neural Network

8

hidden layershidden layer
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Why nonlinear activation function?

9

• The use of a linear function for the nodes negates the effect of adding a 
layer. 

• In this case, the multi-layer model is mathematically identical to a single-
layer neural network.
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Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.
2. Enter the training data { input, correct output } into the neural network, 

and calculate the error from the correct output.
3. Adjust the weights to reduce the error.
4. Repeat Steps 2-3 for all training data
5. Repeat Steps 2-4 until the error reaches an acceptable 

tolerance level.

10

(All training data goes through 
Steps 2-4 once, is called an epoch.)
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Errors and Loss Function

11

di is the correct output of the output node i.
(ground truth)

• Let us define the loss function for output node 𝑦𝑦𝑖𝑖
𝑳𝑳𝒊𝒊 = 𝟏𝟏

𝟐𝟐
(𝒅𝒅𝒊𝒊−𝒚𝒚𝒊𝒊)𝟐𝟐,            𝒚𝒚𝒊𝒊 = 𝝋𝝋 𝒗𝒗𝒊𝒊 , 𝒗𝒗𝒊𝒊 = ∑𝒋𝒋=𝟏𝟏𝒎𝒎 𝒘𝒘𝒊𝒊𝒊𝒊𝒙𝒙𝒋𝒋

where m is the numbers of input nodes

𝒆𝒆𝒊𝒊 = 𝒅𝒅𝒊𝒊 − 𝒚𝒚𝒊𝒊
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Steepest Gradient Decent

12

• We minimize the loss function 𝐿𝐿𝑖𝑖 w.r.t 𝑤𝑤𝑖𝑖𝑖𝑖
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑒𝑒𝑖𝑖 −1
𝜕𝜕𝜑𝜑
𝜕𝜕𝑣𝑣𝑖𝑖

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= −𝑒𝑒𝑖𝑖𝜑𝜑′𝑥𝑥𝑗𝑗

• The steepest gradient decent method
𝑤𝑤𝑖𝑖𝑖𝑖

(𝑘𝑘+1) = 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘) − 𝛼𝛼 𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘) + 𝛼𝛼𝜑𝜑′𝑒𝑒𝑖𝑖𝑥𝑥𝑗𝑗

• Or we may express the above equation as
𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝛼𝛼𝜑𝜑′𝑒𝑒𝑖𝑖𝑥𝑥𝑗𝑗
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Generalized Delta Rule 
• For an arbitrary activation function, the delta rule is expressed as 

• The weight is adjusted in proportion to the input value, xj and the output 
error, ei.

wij = The weight between the output node i and input node j
ei = The error of the output node i
vi = The weighted sum of the output node i
φ′ = The derivative of the activation function φ of the output node I
α = Learning rate ( 0 < α ≤ 1)

13

𝒘𝒘𝒊𝒊𝒊𝒊 ← 𝒘𝒘𝒊𝒊𝒊𝒊 + 𝜶𝜶𝜹𝜹𝒊𝒊𝒙𝒙𝒋𝒋

𝜹𝜹𝒊𝒊 = 𝝋𝝋′ 𝒗𝒗𝒊𝒊 𝒆𝒆𝒊𝒊
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sigmoid function

𝝋𝝋 𝒙𝒙 =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆−𝒙𝒙

Derivative of sigmoid function

14

𝜑𝜑′ 𝑥𝑥 =
𝑑𝑑(1 + 𝑒𝑒−𝑥𝑥)−1

𝑑𝑑𝑑𝑑
= − 1 + 𝑒𝑒−𝑥𝑥 −2 −𝑒𝑒−𝑥𝑥

=
1

1 + 𝑒𝑒−𝑥𝑥
1 −

1
1 + 𝑒𝑒−𝑥𝑥

= 𝜑𝜑 𝑥𝑥 (1 − 𝜑𝜑 𝑥𝑥 )

𝒘𝒘𝒊𝒊𝒊𝒊 ← 𝒘𝒘𝒊𝒊𝒊𝒊 + 𝜶𝜶𝜶𝜶 𝒙𝒙 (𝟏𝟏 − 𝝋𝝋 𝒙𝒙 )𝒆𝒆𝒊𝒊𝒙𝒙𝒋𝒋
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Schemes for Updating weights

      

15

Calculating the error for each 
training data and adjusts the 

weights immediately.

Each weight update is 
calculated for all errors 

of the training data.

It has speed from the SGD and 
stability from the batch.

It is often utilized in Deep Learning.

Stochastic Gradient 
Descent (SGD)

Batch Mini Batch

Weight 
update

Average of 
Weight 
updates

Average of 
Weight 
updates

An 
epoch
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Example 1: Linearly Separable

16

• MLmaterials_L10\Single-layer\
• TestDeltaSGD.m
• DeltaSGD.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 0}

{1, 0, 1, 1}

{1, 1, 1, 1}

responses
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SGD vs. Batch

17

• TestDeltaSGD.m
• DeltaSGD.m

• TestDeltaBatch.m
• DeltaBatch.m

Average of 
Weight 
updates



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example 2: Linearly Inseparable

18

• MLmaterials_L10\Single-layer\
• TestDeltaXOR.m
• DeltaSGD.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses
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Short Summary
• The single-layer neural network can only solve linearly 

separable problems. This is because the single-layer neural 
network is a model that linearly divides the input data space.

• In order to overcome this limitation of the single-layer neural 
network, we need more layers in the network.

19
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Back-propagation Algorithm,
Momentum, Cross Entropy, 
Regularization

Multi-Layer 
Neural Network

20
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Back-Propagation Algorithm
• The previously introduced delta rule is ineffective for training of the multi-

layer neural network because the error is not defined in the hidden layers.
• Back-propagation algorithm provided a systematic method to determine 

the error of the hidden nodes. 
• Once the hidden layer errors are determined, the delta rule is applied to 

adjust the weights.

21

the output error starts from the output layer 
and moves backward until it reaches the 
right next hidden layer to the input layer.
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Back-Propagation Algorithm
• The first thing to calculate is delta, δ, of each node：

𝑒𝑒1 = 𝑑𝑑1 − 𝑦𝑦1
𝛿𝛿1 = 𝜑𝜑′ 𝑣𝑣1 𝑒𝑒1

𝑒𝑒2 = 𝑑𝑑2 − 𝑦𝑦2
𝛿𝛿2 = 𝜑𝜑𝜑 𝑣𝑣2 𝑒𝑒2

𝜑𝜑′ is the derivative of the activation function of the output node.
𝑦𝑦𝑖𝑖 is the output from the output node.
𝑑𝑑𝑖𝑖 is the correct output from the training data.
𝑣𝑣𝑖𝑖 is the weighted sum of the corresponding node.

22
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Back-Propagation Algorithm
• Since we have 𝛿𝛿1 and 𝛿𝛿2, let’s proceed leftward to the hidden nodes and 

calculate the delta：

𝑒𝑒1
1 = 𝑤𝑤11

2 𝛿𝛿1 + 𝑤𝑤21
2 𝛿𝛿2

𝛿𝛿1
1 = 𝜑𝜑′ 𝑣𝑣1

1 𝑒𝑒1
1

= 𝜑𝜑 𝑣𝑣1
1 (1 − 𝜑𝜑 𝑣𝑣1

1 )𝑒𝑒1
1

𝑒𝑒2
1 = 𝑤𝑤12

2 𝛿𝛿1 + 𝑤𝑤22
2 𝛿𝛿2

𝛿𝛿2
1 = 𝜑𝜑′ 𝑣𝑣2

1 𝑒𝑒2
1

= 𝜑𝜑 𝑣𝑣2
1 (1 − 𝜑𝜑 𝑣𝑣2

1 )𝑒𝑒2
1

𝑣𝑣1
1 and 𝑣𝑣2

1 are the weighted sums of the forward signals at the respective nodes.
23
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Update of Weights
• Consider the weight 𝑤𝑤21

2 for example. 

𝑤𝑤21
2 ← 𝑤𝑤21

2 + 𝛼𝛼𝛿𝛿2𝑦𝑦1
1

𝑦𝑦1
1 is the output of the first hidden node.

24
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Update of Weights
• The weight 𝑤𝑤11

1 of figure is adjusted as：

𝑤𝑤11
1 ← 𝑤𝑤11

1 + 𝛼𝛼𝛿𝛿1
1 𝑥𝑥1

𝑥𝑥1 is the output of the first input node.

25



http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Example: Back-Propagation

26

• MLmaterials_L10\Multi-layer\
• TestBackpropXOR.m
• BackpropXOR.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One
hidden layer

One
output node

y
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Momentum 
• The momentum, m, is a term that is added to the delta rule for 

adjusting the weight.
• It acts similarly to physical momentum, which impedes the 

reaction of the body to the external forces.

29

∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛿𝛿𝑖𝑖𝑥𝑥𝑗𝑗
𝑚𝑚 = ∆𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜷𝜷𝑚𝑚−

𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑚𝑚
𝑚𝑚− = 𝑚𝑚

∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛿𝛿𝑖𝑖𝑥𝑥𝑗𝑗
𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + ∆𝑤𝑤𝑖𝑖𝑖𝑖

𝑚𝑚− is the previous momentum 
β is a positive constant that is less than 1.
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Avoiding Zig-Zagging with Momentum
Marble Rolling Down Hill

Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018

Momentum 

32

improves the learning stability.
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Example: Back-Propagation with Momentum

33

• MLmaterials_L10\Multi-layer\
• TestBackpropMmt.m
• BackpropMmt.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One
hidden layer

One
output node

y

0.0038
0.9929
0.9919
0.0127

0.0060
0.9888
0.9891
0.0134

with momentum

without momentum
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Cost Function and Learning Rule
• There are two primary types of cost functions 

𝐿𝐿 = �
𝑖𝑖=1

𝑀𝑀
1
2
𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

𝐿𝐿 = �
𝑖𝑖=1

𝑀𝑀

−𝑑𝑑𝑖𝑖 ln 𝑦𝑦𝑖𝑖 − 1 − 𝑑𝑑𝑖𝑖 ln 1 − 𝑦𝑦𝑖𝑖

34

Cross entropy function
(tend to have better performance)

Quadratic function

• This cost function is proportional to the error.
• The cross entropy function is much more sensitive to the error than quadratic function.
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Training using the cross entropy

38

• The output and hidden layers employ different formulas of the 
delta when the learning rule is based on the cross entropy and 
the sigmoid function.
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Example: 
Back-Propagation using cross entropy

39

• MLmaterials_L10\Multi-layer\
• TestBackpropCE.m
• BackpropCE.m
• Sigmoid.m {0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}

responses

One
hidden layer

One
output node

y
0.0038
0.9929
0.9919
0.0127

with momentum

0.00003
0.9999
0.9998

0.00036

Using cross entropy
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Regularization
• One of the primary approaches used to overcome overfitting is 

making the model as simple as possible using regularization.

• In a mathematical sense, the essence of regularization is 
adding the sum of the weights to the cost function.

41

𝐽𝐽 =
1
2
�
𝑖𝑖=1

𝑀𝑀

𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 + 𝝀𝝀
𝟏𝟏
𝟐𝟐

𝒘𝒘 𝟐𝟐

𝐽𝐽 = �
𝑖𝑖=1

𝑀𝑀

−𝑑𝑑𝑖𝑖 ln 𝑦𝑦𝑖𝑖 − 1 − 𝑑𝑑𝑖𝑖 ln 1 − 𝑦𝑦𝑖𝑖 + 𝝀𝝀
𝟏𝟏
𝟐𝟐

𝒘𝒘 𝟐𝟐
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nnstart
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Contact:
盧家鋒 alvin4016@nycu.edu.tw

THE END
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