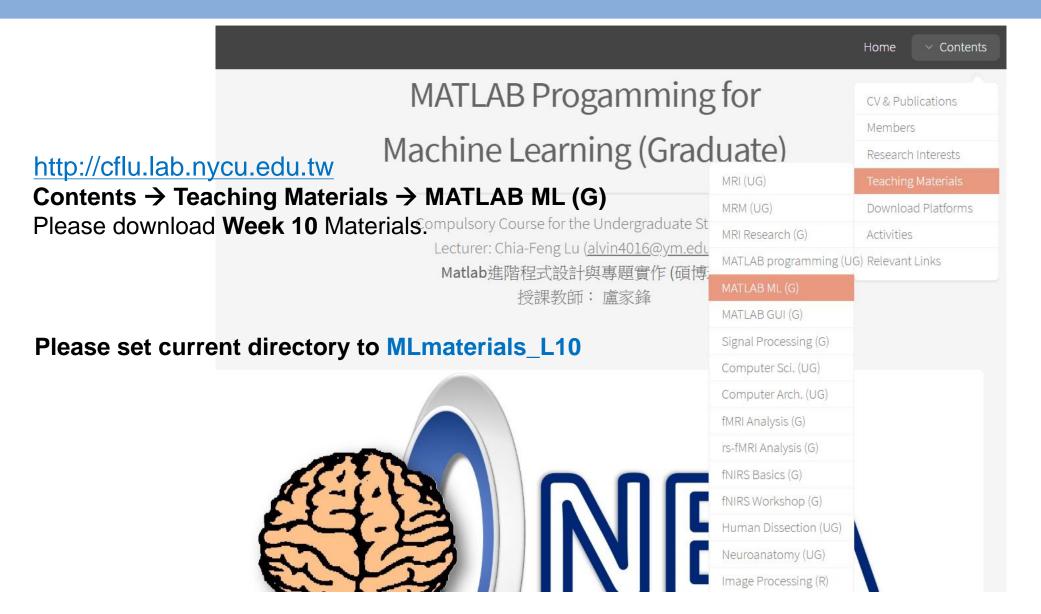


Neural Network

MATLAB進階程式語言與實作

盧家鋒 Chia-Feng Lu, Ph.D. Department of Biomedical Imaging and Radiological Sciences, NYCU alvin4016@nycu.edu.tw

Teaching Materials



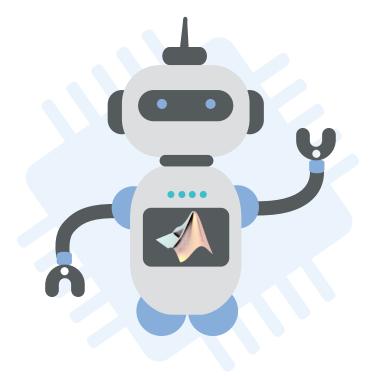
Contents in this Week

01 Single-Layer Neural Network

Basic Concepts and Supervised Learning

02 Multi-Layer Neural Network

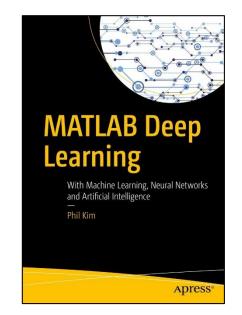
Back-propagation Algorithm, Momentum, Cross Entropy, Regularization

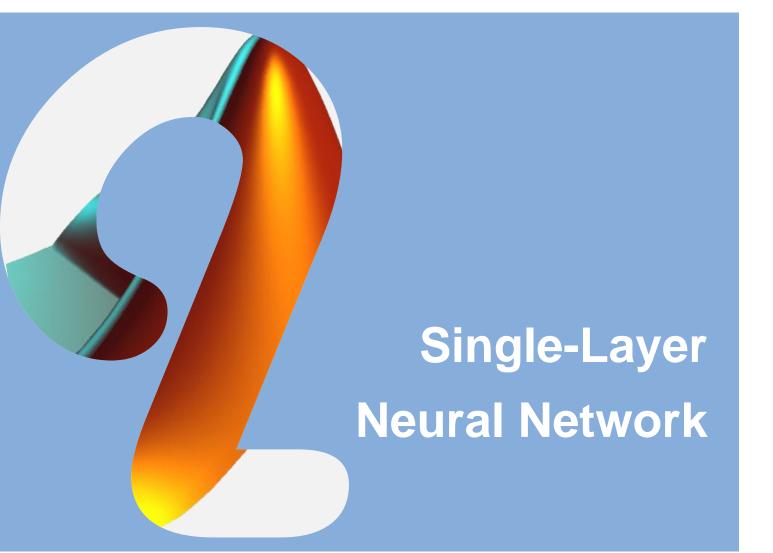


References

[Textbook 5]

- MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 1st edition, 2017 Phil Kim
- Neural Network (Ch.2)
- Training of Multi-Layer Neural Network (Ch.3)

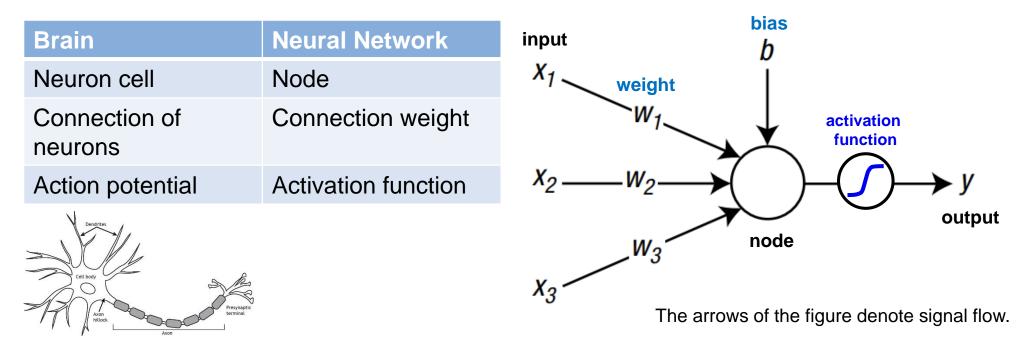




Basic Concepts and Supervised Learning

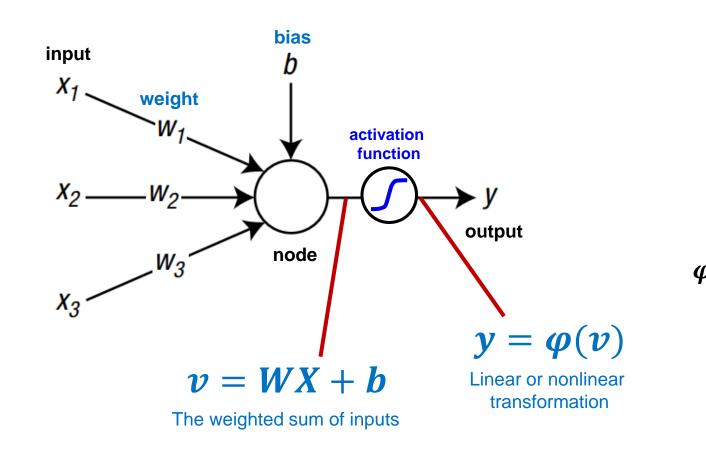
(Artificial) Neural Network

- The neural network imitates the mechanism of the brain. As the brain is composed of connections of numerous neurons
- The information of the neural net is stored in the form of weights and bias.

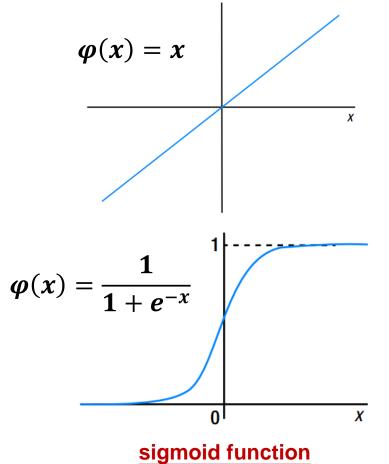


Neural Network

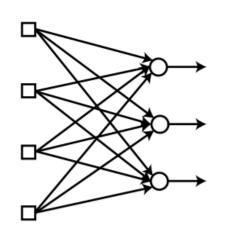
Mathematical representations:

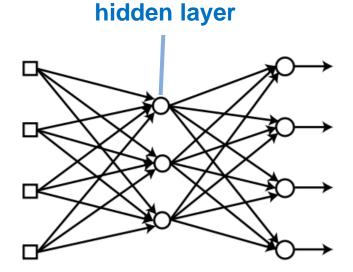


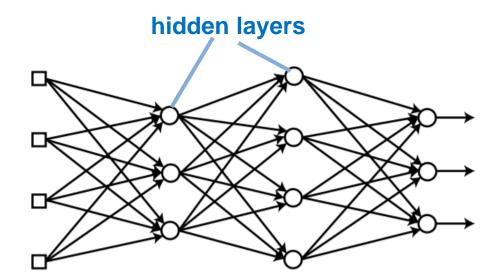
linear function



Layers of Neural Network







Single-layer Neural Network

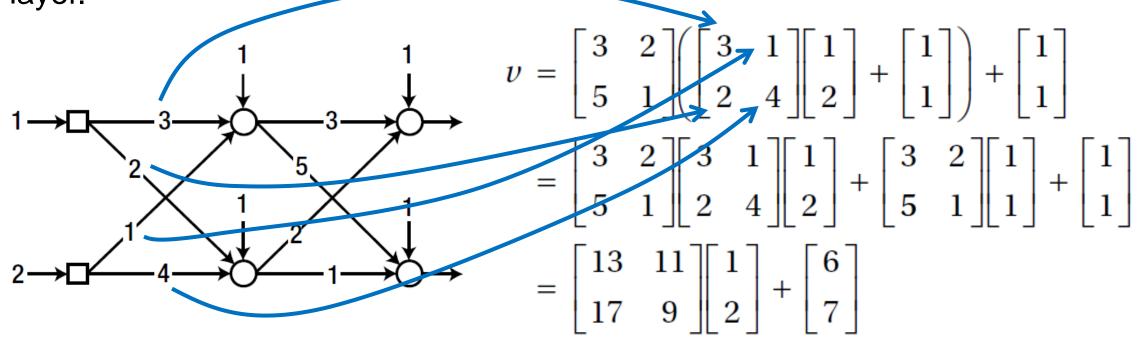
(Shallow) Multi-layer Neural Network

Deep Neural Network

Single-Layer Neural Network		Input Layer – Output Layer	
Multi-Layer Neural Network	Shallow Neural Network	Input Layer - Hidden Layer - Output Layer	
	Deep Neural Network	Input Layer - Hidden Layers - Output Layers	

Why nonlinear activation function?

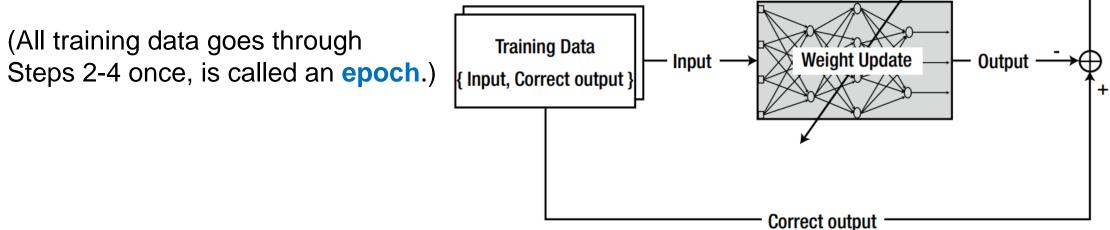
 The use of a linear function for the nodes negates the effect of adding a layer.



 In this case, the multi-layer model is mathematically identical to a singlelayer neural network.

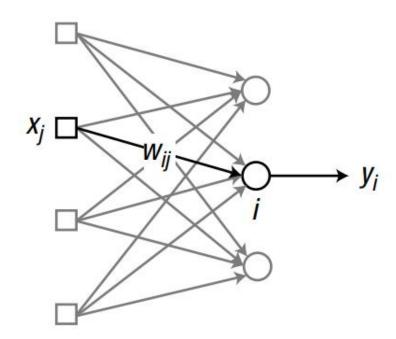
Supervised Learning of a Neural Network

- 1. Initialize the weights with adequate values.
- 2. Enter the training data { input, correct output } into the neural network, and calculate the error from the correct output.
- 3. Adjust the weights to reduce the error.
- 4. Repeat Steps 2-3 for all training data
- 5. Repeat Steps 2-4 until the error reaches an acceptable tolerance level.



Error

Errors and Loss Function



$$\boldsymbol{e}_i = \boldsymbol{d}_i - \boldsymbol{y}_i$$

d_i is the correct output of the output node *i*. (ground truth)

• Let us define the loss function for output node y_i

 $L_i = \frac{1}{2} (d_i - y_i)^2$, $y_i = \varphi(v_i)$, $v_i = \sum_{j=1}^m w_{ij} x_j$

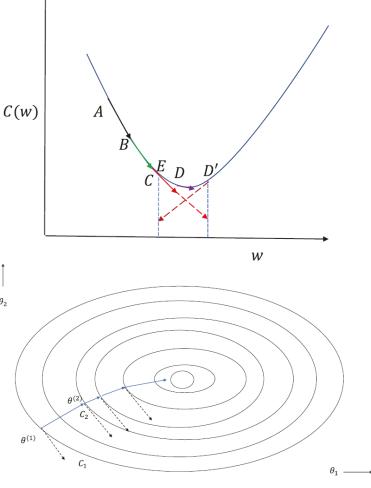
where *m* is the numbers of input nodes

Steepest Gradient Decent

- We minimize the loss function L_i w.r.t w_{ij} $\frac{\partial L_i}{\partial w_{ij}} = e_i(-1)\frac{\partial \varphi}{\partial v_i}\frac{\partial v_i}{\partial w_{ij}} = -e_i\varphi' x_j$
- The steepest gradient decent method

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \alpha \frac{\partial L}{\partial w_{ij}}$$
$$= w_{ij}^{(k)} + \alpha \varphi' e_i x_j$$

• Or we may express the above equation as $w_{ij} \leftarrow w_{ij} + \alpha \varphi' e_i x_j$



Generalized Delta Rule

• For an arbitrary activation function, the delta rule is expressed as

 $w_{ij} \leftarrow w_{ij} + \alpha \delta_i x_j$

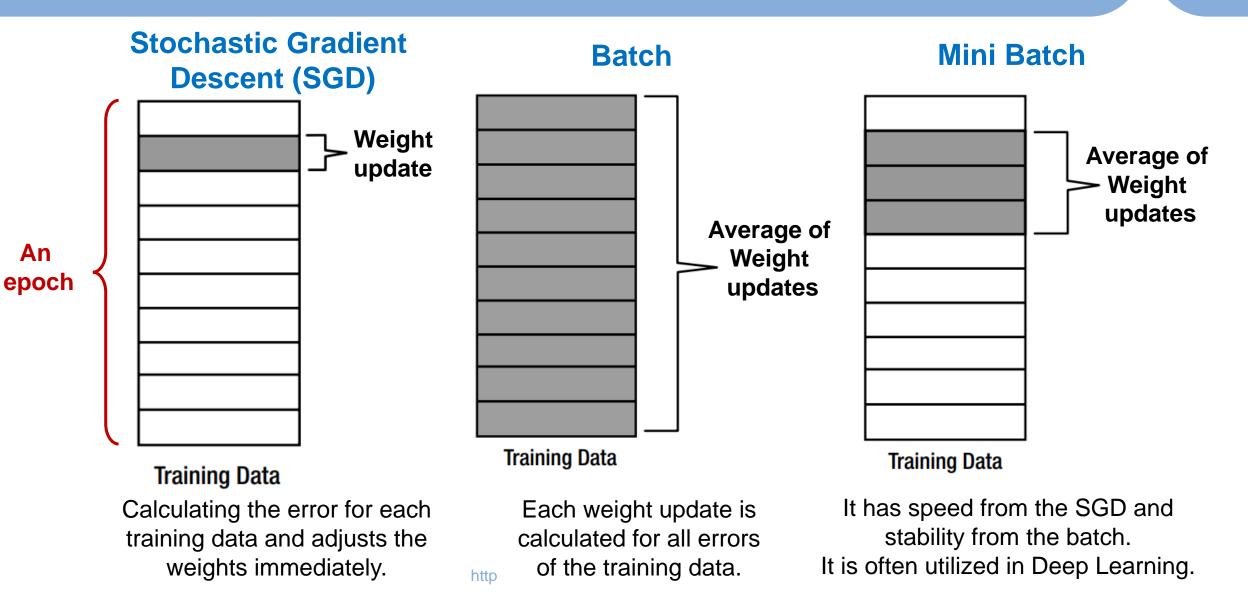
 $\boldsymbol{\delta}_i = \boldsymbol{\varphi}'(\boldsymbol{v}_i)\boldsymbol{e}_i$

• The weight is adjusted in proportion to the input value, x_j and the output error, e_j .

 w_{ij} = The weight between the output node i and input node j e_i = The error of the output node i v_i = The weighted sum of the output node i φ' = The derivative of the activation function φ of the output node / α = Learning rate (0 < $\alpha \le$ 1)

Derivative of sigmoid function

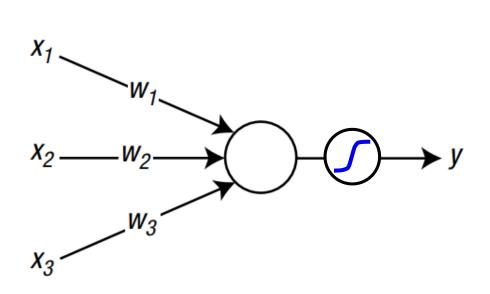
Schemes for Updating weights

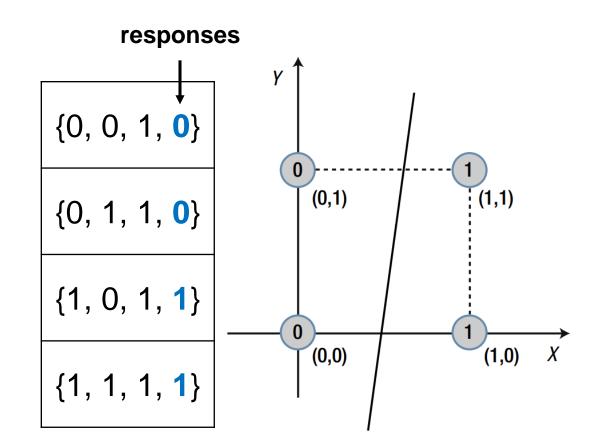


Example 1: Linearly Separable

MLmaterials_L10\Single-layer\

- TestDeltaSGD.m
- DeltaSGD.m
- Sigmoid.m



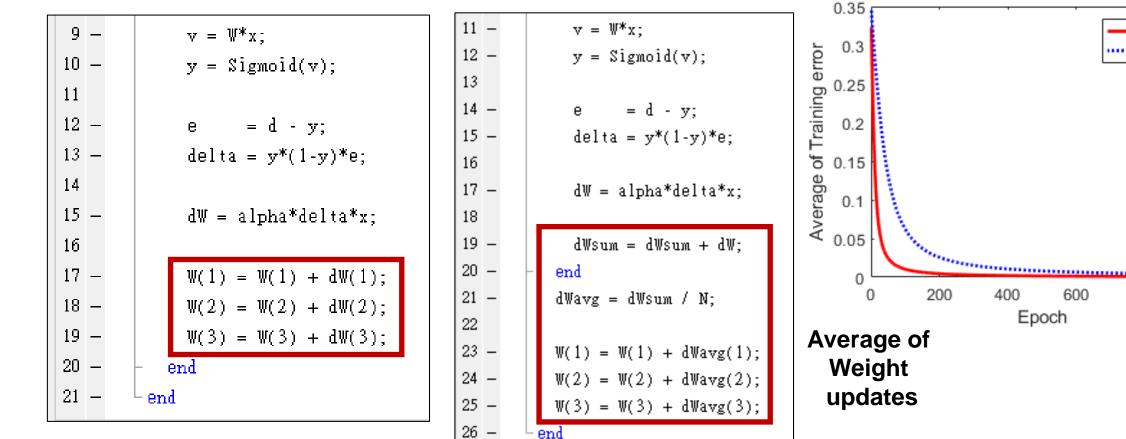


SGD vs. Batch

TestDeltaSGD.m

DeltaSGD.m

- TestDeltaBatch.m
- DeltaBatch.m



SGD

Batch

800

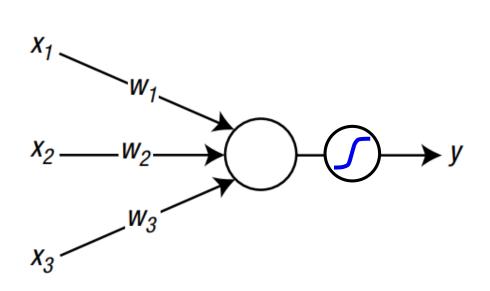
1000

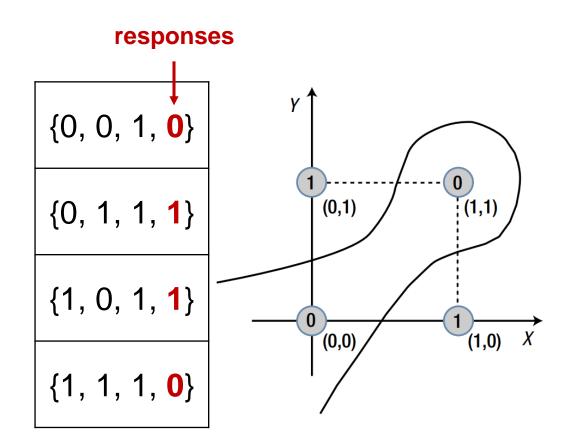
600

Example 2: Linearly Inseparable

MLmaterials_L10\Single-layer\

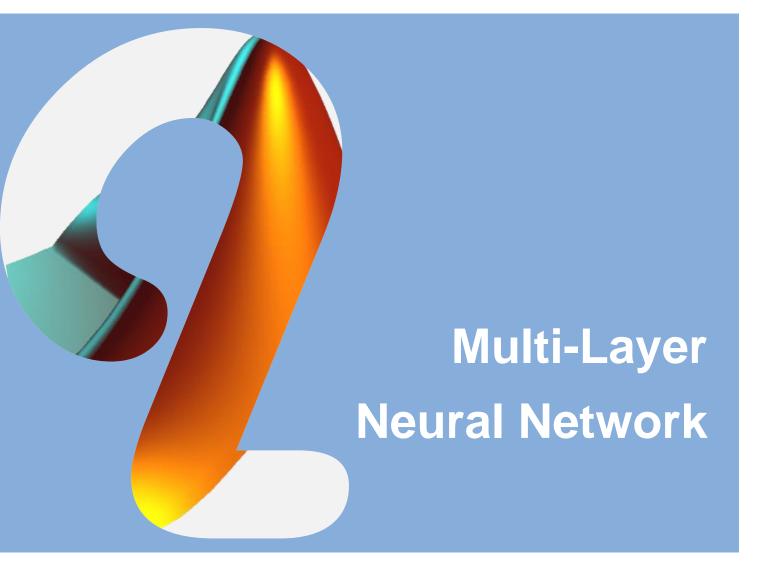
- TestDeltaSGD.m
- DeltaSGD.m
- Sigmoid.m





Short Summary

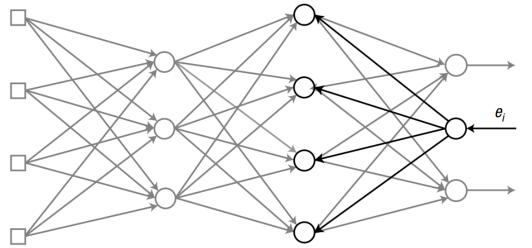
- The single-layer neural network can only solve linearly separable problems. This is because the single-layer neural network is a model that linearly divides the input data space.
- In order to overcome this limitation of the single-layer neural network, we need more layers in the network.



Back-propagation Algorithm, Momentum, Cross Entropy, Regularization

Back-Propagation Algorithm

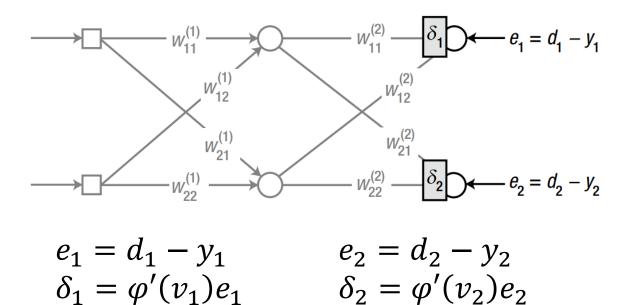
- The previously introduced delta rule is ineffective for training of the multilayer neural network because the error is not defined in the hidden layers.
- Back-propagation algorithm provided a systematic method to determine the error of the hidden nodes.
- Once the hidden layer errors are determined, the delta rule is applied to adjust the weights.



the output error starts from the output layer and **moves backward** until it reaches the right next hidden layer to the input layer.

Back-Propagation Algorithm

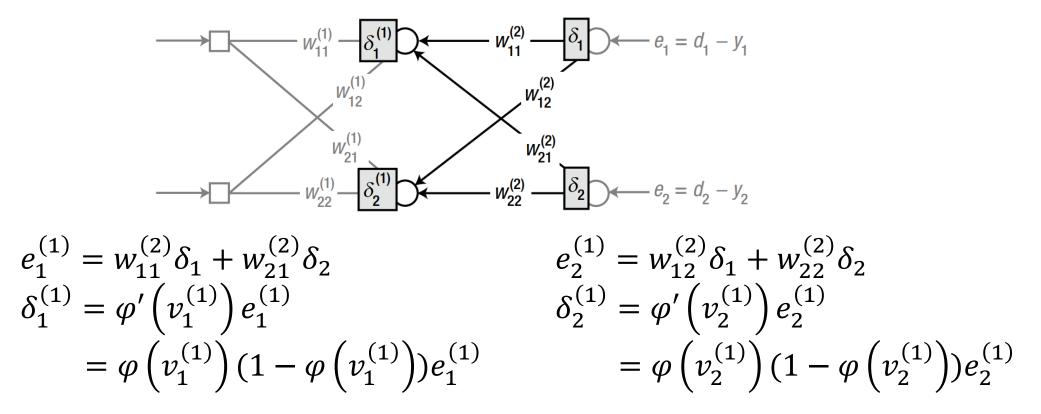
• The first thing to calculate is delta, δ , of each node :



- φ' is the derivative of the activation function of the output node.
- y_i is the output from the output node.
- d_i is the correct output from the training data.
- v_i is the weighted sum of the corresponding node.

Back-Propagation Algorithm

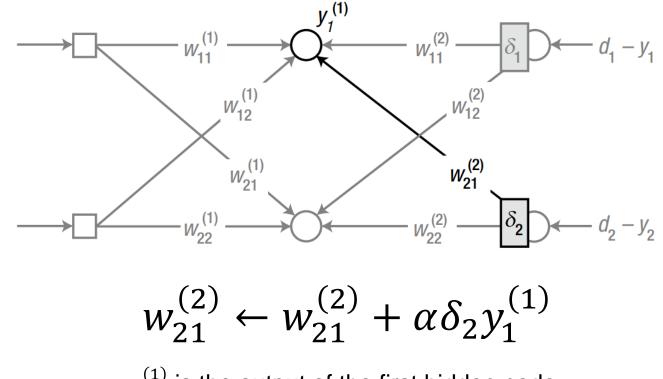
• Since we have δ_1 and δ_2 , let's proceed leftward to the hidden nodes and calculate the delta :



 $v_1^{(1)}$ and $v_2^{(1)}$ are the weighted sums of the forward signals at the respective nodes. http://cflu.lab.nycu.edu.tw, Chia-Feng Lu

Update of Weights

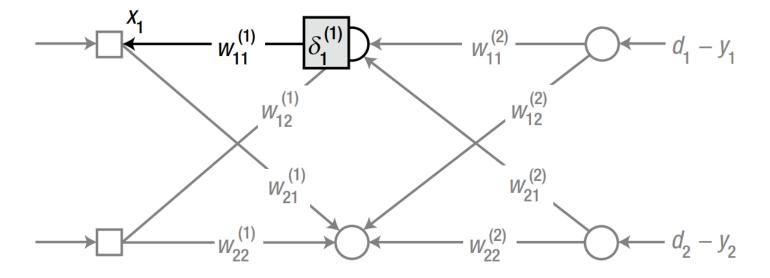
• Consider the weight $w_{21}^{(2)}$ for example.



 $y_1^{(1)}$ is the output of the first hidden node.

Update of Weights

• The weight $w_{11}^{(1)}$ of figure is adjusted as :



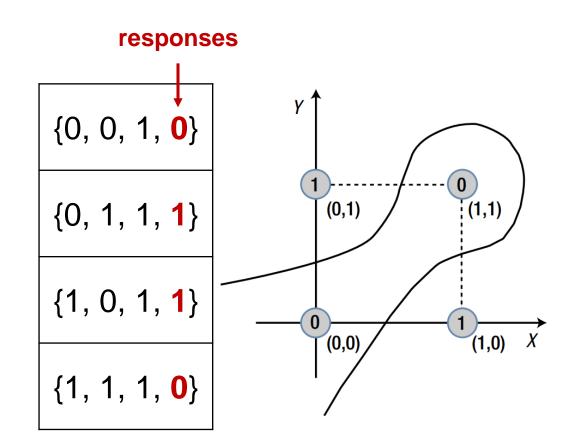
$$w_{11}^{(1)} \leftarrow w_{11}^{(1)} + \alpha \delta_1^{(1)} x_1$$

 x_1 is the output of the first input node.

Example: Back-Propagation

MLmaterials_L10\Multi-layer\

- TestBackpropXOR.m
- BackpropXOR.m
- Sigmoid.m One output node One hidden layer



Momentum

- The momentum, *m*, is a term that is added to the delta rule for adjusting the weight.
- It acts similarly to physical momentum, which impedes the reaction of the body to the external forces.

$$\Delta w_{ij} = \alpha \delta_i x_j$$

$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$

$$\longrightarrow$$

$$\Delta w_{ij} = \alpha \delta_i x_j$$

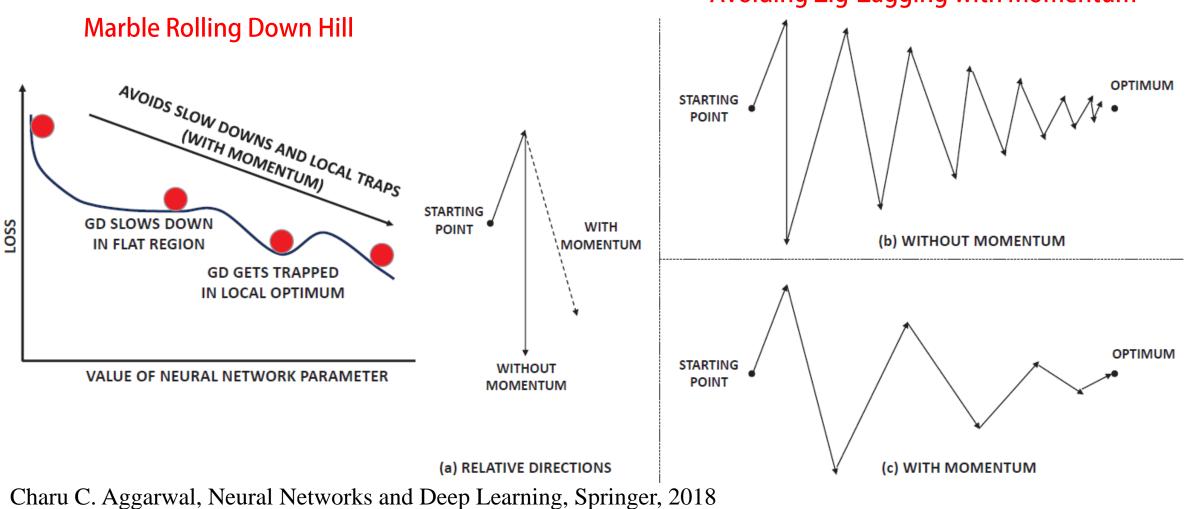
$$m = \Delta w_{ij} + \beta m^-$$

$$w_{ij} \leftarrow w_{ij} + m$$

$$m^- = m$$

 m^- is the previous momentum β is a positive constant that is less than 1.

Momentum improves the learning stability.

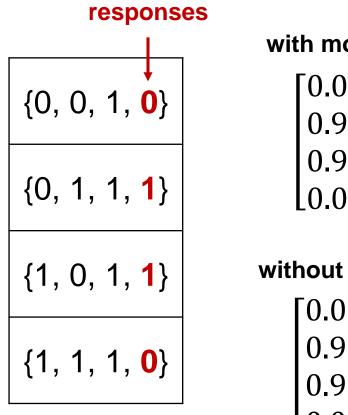


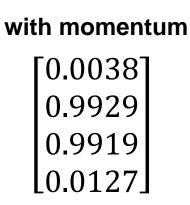
Avoiding Zig-Zagging with Momentum

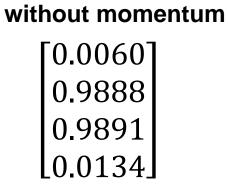
Example: Back-Propagation with Momentum

MLmaterials_L10\Multi-layer\

- TestBackpropMmt.m
- BackpropMmt.m
- Sigmoid.m One output node One hidden layer

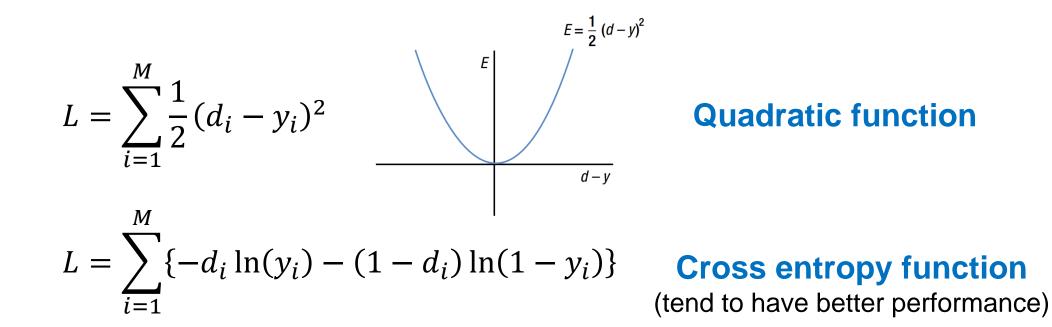




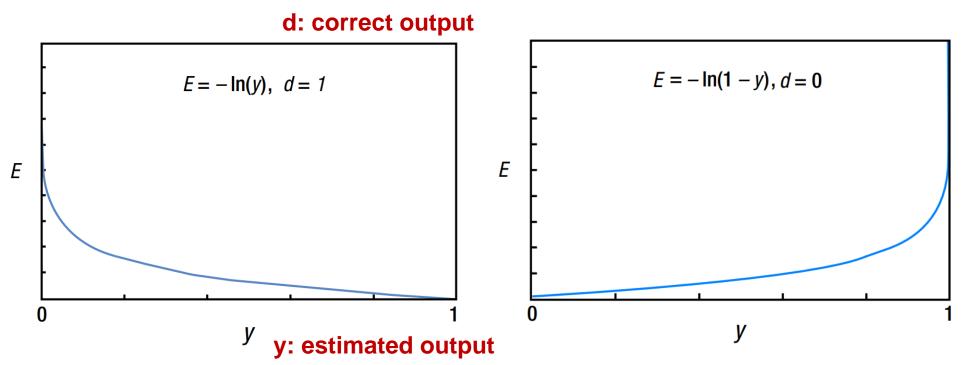


Cost Function and Learning Rule

There are two primary types of cost functions



Cross Entropy Function

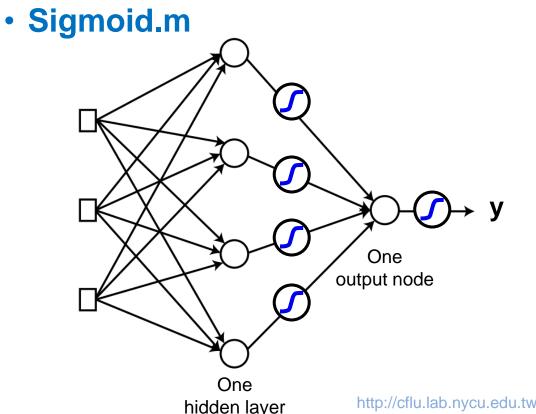


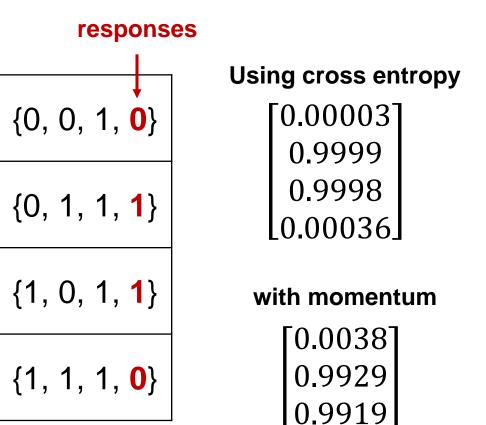
- This cost function is proportional to the error.
- The cross entropy function is much more sensitive to the error than quadratic function.

Example: Back-Propagation using cross entropy

MLmaterials_L10\Multi-layer\

- TestBackpropCE.m
- BackpropCE.m





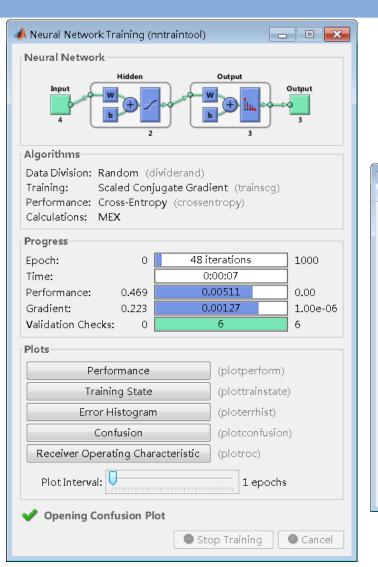
0.0127

Regularization

- One of the primary approaches used to overcome overfitting is making the model as simple as possible using regularization.
- In a mathematical sense, the essence of regularization is adding the sum of the weights to the cost function.

$$J = \frac{1}{2} \sum_{i=1}^{M} (d_i - y_i)^2 + \lambda \frac{1}{2} ||w||^2$$
$$J = \sum_{i=1}^{M} \{-d_i \ln(y_i) - (1 - d_i) \ln(1 - y_i)\} + \lambda \frac{1}{2} ||w||^2$$

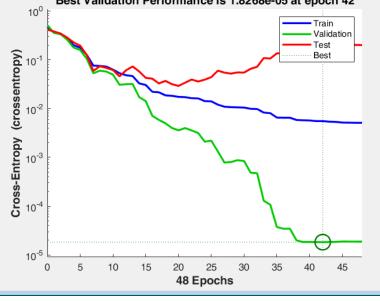
nnstart



Iris dataset

Neural Network Training Performance (plotperform), Epoch 48, Validation sto...
 File Edit View Insert Tools Desktop Window Help

 Best Validation Performance is 1.8268e-05 at epoch 42



Training Confusion Matrix					
1	35	0	0	100%	
	33.7%	0.0%	0.0%	0.0%	
	0	33	0	100%	
	0.0%	31.7%	0.0%	0.0%	
Culpul	0	1	35	97.2%	
3	0.0%	1.0%	33.7%	2.8%	
	100%	97.1%	100%	99.0%	
	0.0%	2.9%	0.0%	1.0%	
	~	r	ზ		
	Target Class				

Test Confusion Matrix				
1	7	0	0	100%
	30.4%	0.0%	0.0%	0.0%
2	0	10	2	83.3%
	0.0%	43.5%	8.7%	16.7%
3	0	0	4	100%
Curbar	0.0%	0.0%	17.4%	0.0%
	100%	100%	66.7%	91.3%
	0.0%	0.0%	33.3%	8.7%
	~	v	ი	
Target Class				

Validation Confusion Matrix

1	8	0	0	100%
	34.8%	0.0%	0.0%	0.0%
² Class	0	6	0	100%
	0.0%	26.1%	0.0%	0.0%
Output Class	0	0	9	100%
	0.0%	0.0%	39.1%	0.0%
	100%	100%	100%	100%
	0.0%	0.0%	0.0%	0.0%
	~	r	ი	
	Target Class			

	All Confusion Matrix				
1	50	0	0	100%	
	33.3%	0.0%	0.0%	0.0%	
class 5	0	49	2	96.1%	
	0.0%	32.7%	1.3%	3.9%	
Output	0	1	48	98.0%	
3	0.0%	0.7%	32.0%	2.0%	
	100%	98.0%	96.0%	98.0%	
	0.0%	2.0%	4.0%	2.0%	
	~	າ Target	رہ selD		
	ranget Old33				

Contact: 盧家鋒 alvin4016@nycu.edu.tw