Probabilistic (Bayes) Classifier
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Credit: Chap5. A First Course in Machine Learning, 2ed, Simon Rogers and Mark Girolami, 2017
Pattern Recognition, 4 Ed., S. Theodoridis and K. Koutroumbas, 2014



The General Classification Problem

* Given aset of N training samples, x4, x5, ..., Xy, €ach is D-dimensional.
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* Predict the class t,,,,, for a new sample x,,,,, based on X and t.



An example with three classes
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[Q] Xnew = 0l thew = 17 27 37 Orp(tnew — 1|xneW;X1, t1) =7
P(tnew = 2|Xnew, X2, t2) =? p(tnew = 3|Xnew, X3, t3) =7
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class 2 Assume
i {}Q ¢ -X1={x1,...,xN1},
.| o, ¢ |Xz={x... xy,}and
X3 — {xl, C ey xNB} alre

1 training data of class 1, 2 and 3
and can be generated by three
| separate Gaussian distribution
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Plot the data (plotcc.m)

%5 Plot the data >> X(1:5,1) >> t(1:5)
cl = unique (t);

col = {'ko',"kd", "ks'}
fcol = {[1 0 0],[0 1 O], [0 O 1]},

ans = dns =

figure (1) ;
1.1107  -2.107 1
for ¢ = 1l:length(cl) 0.5498 DD&S 1
pos = find(t==cl(c)); _DEﬁSZ 1-&99 1
plot (X(pos,1),X(pos,2),col{c}, ... _ ecs | 1
'markersize',10, 'linewidth',2, ... 0053 -U§B9 1
'markerfacecolor', fcol{c}); 280 Lo
o hold on > cl >> find(t==c1(2))
x1lim([-3 71) _
ylim([-6 6]) o= T
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We need to know

« What is the multivariate Gaussian distribution N(x; u, ) ?

* How to compute the mean u, and the covariance ),
-> Using maximizing the likelihood function
—> Empirical mean and covariance

« How to make prediction p(t,,o,, = ¢|Xpew, Xc te),c =1,2,3
—> Using the Bayes’ rule

gy < PANB) _ pBIApG)

p(B) p(B)

X t) — p(xneW| tneW: C, XC’ tc)p(tneW:C|Xc,tc)
’ P (XnewlX,t)

-2 p(tnew — Clxnew:



Gaussian Distribution



Gaussian Distribution

Recall the Gaussian, or normal, distribution:

N(x;u,0%) =

In machine learning, we use Gaussians a lot because they make the

calculations easy.
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Multivariate Gaussian Distribution

* Multivariate Gaussian Distribution x ~N(u, Y)), or N(x; 1, Y)) is

1

1
p(x) = PBLENIEE exp[—2 (x =)' X7 (x — w]




Multivariate parameters
Mean: E[x] = [uy, -, pal”

Covariance
012 012
2
Y =Cov(x) = E[(x — w)(x — )] = 721 0%
Od1  Oqg2

For Gaussians - all you need to know Is mean and covariance




2D Gaussian pdf, diagonal ¥ with 64 = o5
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2D Gaussian pdf, diagonal ¥ with 6§ = 15 >» ¢% = 3
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2D Gaussian pdf, diagonal ¥ with 65 = 3 < a5 = 15
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2D Gaussian pdf, non-diagonal )
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Maximum Likelihood



Maximum Likelihood

* Letxq, x,,...,xy beindependent random samples drawn from pdf p(x; 8).
We form the joint pdf p(X; 8), where X = {x{, x,, ..., Xy}
N

p(X;0) = p(xs, %2, xy;0) = | | P31 0)

It 1s known as the likelihood function of 8 with r_espect to X

« Using the monotonicity of Iog we define the log-likelihood function

1(6) = 1og]_[p<xk 0) = ZIogpuk 0)

N
- =2y _ L0
mL = ars g 00 ~ Lip(x;;0) 00

« The ML estimate corresponds to the peak of the log-likelihood function.



Maximum Likelihood

-100

-3

Assume 1D training points are drawn from a Gaussian
of a particular variance, but unknown mean. Four of the
Infinite number of candidate source distributions are
shown in dashed lines.

The likelihood p(D;6) as a function of the mean. If we

had a very large number of training points, this likelihood
would be very narrow.

The value that maximizes the likelihood is marked 8:

6 also maximizes the logarithm of the likelihood — i.e.,
the log-likelihood (), shown at the bottom.



Maximum Likelihood

Assume that N data points, xq, x,, . . ., Xy, have been generated by a 1D Gaussian pdf
with unknown mean and variance. Derive the fi,,;, and 65; .
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Maximum Likelihood

Assume that N data points, x4, X2, ..., Xy, are vectors generated from a Gaussian pdf with
unknown mean and covariance matrix. Derive the ML estimate of the variance.

(W) = l?vg [TR=1p(x; ) = X1 log p(xy; p)

= log a7 2 G- TS (g — )
_k=1 og(zﬂdﬂlz'l/zexp[ 5 (e =) X7 (e — ]

N
N 1
= —= (log(2n4|%1)) Ekzlm TS (e — 1)

oL(uwY) ~ 1
a‘; =0= MUy, = ;Z’zl’:lxk

OL(w,>) N 1 ~ ~
a; =0>=> YmL= ;Z’zl’:l(xk —HML)(xk—ﬂML)T




Maximum Likelihood: An example with three classes (plotcc.m)

Now we have
N(pq, 1), NQ(ug, i), N(us, Yi3)

We can compute
p(xnew thew= 1, X1, tl)
p(xnew tnew= 2, X2, tz) |
p(xnew thew= 3, X3, t3)

And

3
z p(xnewl thew= C, X, tc) =1
c=1 6




Fit class-conditional Gaussians for each class (plotcc.m)

class var = [];
for ¢ = 1l:length(cl)
pos = find(t==cl(c));

o

% Find the means

>> class mean

class mean =

class mean(c, :) = mean (X(pos,:));

class:var(:,:,c) = cov (X(pos,:),1); -0.1141 0.1117
end 1.8161 2.5445
$% Plot the contours 1.6356  -2.1388

for ¢ = l:length(cl)
pos = find(t==cl(c));

plot (X(pos,1),X(pos,2),col{c}, ...
'markersize',10, 'linewidth', 2, "'markerfacecolor', fcol{c}):;

end

x1lim([-3 7]),ylim([-6 ©6])

[Xv,Yv] = meshgrid(-3:0.1:7,-6:0.1:6);

for ¢ = l:1length(cl)

temp = [Xv(:)-class mean(c,1l) Yv(:)-class mean(c,2)];
tempc = class var(:,:,cC);
const = -log(2*pi) - log(det (tempc)) ;

Probs = exp(const - 0.5*diag(temp*inv (tempc) *temp')) ;
contour (Xv, Yv, reshape (Probs, size (Xv))) ;
end

>>» class var

class wvar(:,:,

0.98%6
0.0886

class var(:,:,

1.7073
-0.1028

class wvar(:,:,

1.1158
1.0470

0.0886
1.5076

1.0470
1.1917




Bayes’ Rule



Joint, and Conditional Probability

p(A N B) : the joint probability of the events A and B.

A conditional probability measure p(A|B) is defined by

_p(ANB)
p(AIB) = = s
Similarly,
B p(BNA)
p(B|A) = ()
Therefore
D(AIB) = p(B|A)p(A)

p(B)



Total Probability

 LetAq A,,-, A, be n mutually exclusive events,
e, A; NA; =@,i #j,and U{_; A; = Q (sample space)

« Let B be any event so that

B =Bn UAl — U(B N Al) = ,4" -\‘\ S ;'__‘I-.-.-
l:l l:l ", ;__'.\\ I.,,.

> p(B) = ) p(BnA) = ) p(BIAIP(A)
=1 =1



Bayes’ Theorem

 Now
p(B|A)p(A;) _ p(B|A)p(A;)
p(B) = p(BIADP(A))

p(A;|B) =

 Therefore

p(xnewl thew= € X¢, tc)p(tnewz c|Xe, tc)

P(thew = C|Xnew, X, t) = 3
Zc’:l P (Xnew| trew= ¢, X1, te) P (trew = c'|Xerrter)

~ likelihood X prior

Evidence



Example

Assume a certain class Is given a midterm exam.
S : the event that a student studied, P(S)=0.7

P( a student pass the exam | S )= P(A|S)=0.9

P( a student pass the exam | S¢ )= P(A|S¢)=0.05

Given that a student did not pass the exam, what is the probability that
she or he studied?

_ P(A®S)=P(A¢S)P(S)
PSIAY) = BAY)=P(AenS)+ P(AnSY)

_ P(A®[S)P(S)
~ P(AS)P(S)+P(A°|S¢)P(S®)

a (1-0.9)%0.7 _ 007 _ .
~ (1-0.9)%0.7+(1-0.05)%(1-0.7)  0.335 19.7%




Making prediction

 Since we can use the known N (¢, > 1), N(u,,>5), and N(us, Y 3)
to compute p(Xnew| thew= 1, X1, t1), P(Xnew| thew= 2, X3, t;) and
p(xnewl tnewz 3'X3' t3)

Nc
N1+N,+N3

» If we assume the prior p(t,,= c|X,, o) =

e Therefore

p(xnewl thew= C, X¢) tc)p(tnewz c|lXe te)
Zg’=1 p(xnewl thew™= C’:Xc’: tCI)p(tnew: C,|Xc’: ter)

p(tnew — Clxnew» X, t) —

N¢
N(xnew;”C'ZC)Nl_HVZ_HVB

3 . Ner
ZC’=1 N(xneW’”C”ZC’)N1+N2+N3




Making prediction (bayesclass.m)

Probability contours for class 1 Probability contours for class 2 Probability contours for class 3




o\°

%

bayesclass.m: Compute the predictive probabilities

Xv,Yv] = meshgrid(-3:0.1:7,-6:0.1:6); p(thew= CclXst:) =1/3
Probs = [];
for ¢ = 1l:length(cl)
temp = [Xv(:)-class mean(c,1l) Yv(:)-class mean(c,2)];
tempc = class var(:,:,cC);
const = -log(2*pi) - log(det (tempc)):;
Probs(:,:,c) = reshape (exp(const - 0.5*diag(temp*inv (tempc) *temp')),size (Xv));
end

Probs = Probs./repmat (sum(Probs,3), [1,1,3]);

o o
©° 0

Plot the predictive contours

N(xnew:ﬂcxzc)ml

figure (2); — +N2 N3

for 1 = 1:3 p(tﬂew = ClxﬂEW’X’t)_ 23 N(x ) Z ) c!
subplot (1,3,1); ¢/ =1 " Fnewiteh el N NSNS
hold off

end

for ¢ = 1l:length(cl)

pos = find(t==cl(c));
plot (X(pos,1),X(pos,2),col{c}, ...

'markersize',10, 'linewidth', 2, 'markerfacecolor', fcol{c}):;
hold on

end

xlim([-3 7]),ylim([-6 6])

contour (Xv,Yv, Probs (:, :,1));

ti = sprintf('Probability contours for class %g',1);title(ti);



2
Xnew = [0]’ thew = p(tnew = C|xXpew, Xc» tc) =7

p(xnewl thew= C, X, tc)

p (tnew = C |Xc: tc)

p(xnewl thew= C, X¢, tc)
Zi”:l P Xnew| thew= ¢, X1, Eer)

0.0109

0.0042

0.0003

0.333

0.333

0.333

0.7072
0.2741

0.0187

bayesclass X _new.m



%% bayesclass X _new.m: Repeat without Naive assumption
class var = [];

for c

l:1length(cl)

pos = find(t==cl (c));
% Find the means
class mean(c, :) = mean(X(pos,:));
class var(:,:,c) = cov(X(pos,:),1);
end
%% Compute the predictive probabilities
Xv=2;
Yv=0 ;
Probs = [];
for ¢ = l:length(cl)
temp = [Xv(:)-class mean(c,1l) Yv(:)-class mean(c,2)];
tempc = class var(:,:,cC);
const = -log(2*pi) - log(det (tempc)):
Probs (:, :,c) = reshape (exp(const -
0.5*diag(temp*inv (tempc) *temp') ), size (Xv));
end

[Probs(:,:,1) Probs(:,:,2) Probs(:,:,3) sum(Probs, 3)]

Probs

Probs./repmat (sum(Probs,3), [1,1,3])



The nalve-Bayes assumption



The naive-Bayes assumption

 Fitting a 2-D Gaussian requires 5 parameter: 2 for u., and 3 for ).
—> feasible for 30 training points in each class.

« But fitting a D-dimensional Gaussian requiresD+D +D(D —1)/2
parameters.

—> For 10 dimensions, 30 data points are not sufficient to fit 65 parameters.

* Naive Bayes assumption: the class-conditional distributions can be
factorized into a product of univariate distributions.

-2 p(xil ti=c, X, tc) — 3=1 p(xidl ti=c, X, tc)

—> cannot model any within-class dependencies

- 10-dimensional Gaussian requires 20 parameters instead of 65



b

Maximum Likelihood: An example with three classes

Now we have
N(Mll 0-121)’ N(”Z! 0-22 I)! N(ﬂ3' 0-321) ik

We can compute
p(xnew thew= 1, X1, tl)
p(xnew thew= 2, X2, tZ)
p(xnew thew= 3, X3, t3) i

And Hl

3
Ep(xnewl thew= G, X tc) =1 i
c=1




% Fit class-conditional Gaussians for each class
Using the Naive (independence) assumption
for ¢ = 1l:length(cl)
pos = find(t==cl(c));
% Find the means
class mean(c, :) = mean (X(pos,:));

class var(c,:) = var(X(pos,:),1);

o
o
o

o

% Plot the contours
[Xv,Yv] = meshgrid(-3:0.1:7,-6:0.1:06);
for ¢ = 1l:length(cl)

temp = [Xv(:)-class mean(c,1l) Yv(:)-class mean(c,2)];
tempc = diag(class var(c,:)); <

const = -log(2*pi) - log(det (tempc)):;

Probs = exp(const - 0.5*diag(temp*inv (tempc) *temp'))
contour (Xv, Yv, reshape (Probs, size (Xv)));

end



Making prediction (bayesclass naive.m)

Probability contours for class 1

Probability contours for class 2 Probability contours for class 3

4r & ¢ &
800% .
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Although the class-conditional distribution p(x;| t;= 3, X3, t3) for
class 3 is not particularly appropriate, the classification contours are still
reasonable



%% Compute the predictive probabilities
[

Xv,¥Yv] = meshgrid(-3:0.1:7,-6:0.1:0);
Probs = [];
for ¢ = 1l:length(cl)
temp = [Xv(:)-class mean(c,1l) Yv(:)-class mean(c,2)];
tempc = diag(class var(c,:)); -
const = -log(2*pi) - log(det (tempc)):;
Probs(:,:,c) = reshape(exp(const - 0.5*diag(temp*inv (tempc) *temp')),size (Xv));
end

Probs = Probs./repmat (sum(Probs,3),[1,1,3]1);
%% Plot the predictive contours
for 1 = 1:3
subplot(1,3,1);
for c l:1length(cl)
pos = find(t==cl(c));
plot (X(pos,1),X(pos,2),col{c}, ...
'markersize',10, 'linewidth', 2, 'markerfacecolor', fcol{c});
hold on
end
xlim([-3 7]), ylim([-6 6])
contour (Xv,Yv, Probs (:, :,1));

o

ti = sprintf('Probability contours for class %g',1);
title (tl) ;
end



summary

We assume the class-conditional distribution p(x;| t;= ¢, X, t.) isa
multivariate Gaussian N(u., Y..)

A=~V xcand $c = ~ T, (g — i) (x— )T are the empirical mean
and covariance computed from maximizing likelihood function.

We make prediction using Bayes’ rule
N
N (Xnew; M, 2ic) N, + N; + N

3 . NCI
chzl N(xnew» I"’C”ZC’) N1 + Nz + N3

p(tnew — Clxnew: X, t) —

Use Naive assumption to reduce the number of estimated parameters



Remark: Discriminant Analysis

Assume p(x;| t;= ¢, X, t.) are Gaussian densities,
1. the same Y .=> In each class, this leads to linear discriminant analysis.
2. different > . In each class, we get quadratic discriminant analysis.

3. Y . are diagonal, 1.e., conditional independence in each class ,we get nave
Bayes.



