Probabilistic (Bayes) Classifier 生醫光電所 吳育德

The General Classification Problem

• Given a set of N training samples, x_1, x_2, \ldots, x_N , each is D-dimensional.

$$X = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,D} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \cdots & x_{N,D} \end{bmatrix} \text{ or } \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_D^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_D^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(N)} & x_2^{(N)} & \cdots & x_D^{(N)} \end{bmatrix}$$

• Each x_i is labelled by $t_i \in \{1, 2, \dots C\}$

$$t = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}$$

• Predict the class t_{new} for a new sample x_{new} based on X and t.

An example with three classes

[Q]:
$$x_{new} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
, $t_{new} = 1$? 2? 3? or $p(t_{new} = 1 | x_{new}, X_1, t_1) =$? $p(t_{new} = 2 | x_{new}, X_2, t_2) =$? $p(t_{new} = 3 | x_{new}, X_3, t_3) =$?

Assume

$$X_1 = \{x_1, \dots, x_{N_1}\},\ X_2 = \{x_1, \dots, x_{N_2}\}$$
 and $X_3 = \{x_1, \dots, x_{N_3}\}$ are training data of class 1, 2 and 3 and can be generated by three separate Gaussian distribution

Plot the data (plotcc.m)

```
% Plot the data
cl = unique(t);
col = \{ 'ko', 'kd', 'ks' \}
fcol = \{[1 \ 0 \ 0], [0 \ 1 \ 0], [0 \ 0 \ 1]\};
figure(1);
for c = 1:length(c1)
    pos = find(t==cl(c));
    plot(X(pos,1),X(pos,2),col{c},...
         'markersize',10,'linewidth',2,...
         'markerfacecolor', fcol(c));
    hold on
end
xlim([-3 7])
ylim([-6 6])
```

```
>> X(1:5,:) >> t(1:5)

ans = ans =

1.1107 -2.1079 1
-0.5498 0.0943 1
-0.0382 1.8829 1
0.0555 -0.6139 1
0.5870 -1.2067 1
```

```
>> c1
c1 =
1
2
3
```


We need to know

- What is the multivariate Gaussian distribution $N(x; \mu, \Sigma)$?
- How to compute the mean μ , and the covariance \sum
- → Using maximizing the likelihood function
- → Empirical mean and covariance
- How to make prediction $p(t_{new} = c | x_{new}, X_c, t_c), c = 1, 2, 3$
- → Using the Bayes' rule

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(B|A)p(A)}{p(B)}$$

$$\Rightarrow p(t_{new} = c | x_{new}, X, t) = \frac{p(x_{new} | t_{new} = c, X_c, t_c) p(t_{new} = c | X_c, t_c)}{p(x_{new} | X, t)}$$

Gaussian Distribution

Gaussian Distribution

• Recall the Gaussian, or normal, distribution:

$$N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• In machine learning, we use Gaussians a lot because they make the calculations easy.

Multivariate Gaussian Distribution

• Multivariate Gaussian Distribution $x \sim N(\mu, \Sigma)$, or $N(x; \mu, \Sigma)$ is

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right]$$

Multivariate parameters

- Mean: $E[x] = [\mu_1, \dots, \mu_d]^T$
- Covariance

$$\sum = \operatorname{Cov}(\mathbf{x}) = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^T] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix}$$

For Gaussians - all you need to know is mean and covariance

2D Gaussian pdf, diagonal Σ with $\sigma_1^2 = \sigma_2^2$

$$\Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \qquad (x - \mu)^T \sum_{1} (x - \mu) = [x_1 \ x_2] \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = C$$

$$\frac{x_1^2}{\sigma_1^2} + \frac{x_2^2}{\sigma_2^2} = C$$

$$x_2$$
(a)
(b)

2D Gaussian pdf, diagonal Σ with $\sigma_1^2=15\gg\sigma_2^2=3$

2D Gaussian pdf, diagonal Σ with $\sigma_1^2 = 3 \ll \sigma_2^2 = 15$

2D Gaussian pdf, non-diagonal Σ

• Let x_1, x_2, \ldots, x_N be independent random samples drawn from pdf $p(x; \theta)$. We form the joint pdf $p(X; \theta)$, where $X = \{x_1, x_2, \ldots, x_N\}$

$$p(X; \boldsymbol{\theta}) \equiv p(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N; \boldsymbol{\theta}) = \prod_{k=1}^{n} p(\boldsymbol{x}_k; \boldsymbol{\theta})$$

It is known as the likelihood function of θ with respect to X

• Using the monotonicity of log, we define the *log-likelihood function*

$$l(\boldsymbol{\theta}) \equiv \log \prod_{k=1}^{N} p(\boldsymbol{x}_k; \boldsymbol{\theta}) = \sum_{k=1}^{N} \log p(\boldsymbol{x}_k; \boldsymbol{\theta})$$

$$\widehat{\theta}_{ML} = \arg\max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) \Rightarrow \frac{\partial l(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{k=1}^{N} \frac{1}{p(\boldsymbol{x}_k; \boldsymbol{\theta})} \frac{\partial p(\boldsymbol{x}_k; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$

• The ML estimate corresponds to the peak of the log-likelihood function.

Assume 1D training points are drawn from a Gaussian of a particular variance, but unknown mean. Four of the infinite number of candidate source distributions are shown in dashed lines.

The likelihood $p(D;\theta)$ as a function of the mean. If we had a very large number of training points, this likelihood would be very narrow.

The value that maximizes the likelihood is marked $\hat{\theta}$;

 $\hat{\theta}$ also maximizes the logarithm of the likelihood — i.e., the log-likelihood $l(\theta)$, shown at the bottom.

Assume that *N* data points, x_1, x_2, \ldots, x_N , have been generated by a 1D Gaussian pdf with unknown mean and variance. Derive the $\hat{\mu}_{ML}$ and $\hat{\sigma}_{ML}^2$.

$$\begin{split} L(\mu,\sigma^2) &\equiv \log \prod_{k=1}^N p(x_k;\mu,\sigma^2) = \sum_{k=1}^N \log p(x_k;\mu,\sigma^2) = \sum_{k=1}^N \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_k-\mu)^2}{2\sigma^2}} \\ &= -\frac{N}{2} (\log(2\pi) + \log\sigma^2) - \frac{1}{2\sigma^2} \sum_{k=1}^N (x_k - \mu)^2 \\ &\frac{\partial L(\mu,\sigma^2)}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{k=1}^N (x_k - \mu) = 0 \Rightarrow \quad \hat{\mu}_{ML} = \frac{1}{N} \sum_{k=1}^N x_k \\ &\frac{\partial L(\mu,\sigma^2)}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{k=1}^N (x_k - \mu)^2 = 0 \Rightarrow \quad \hat{\sigma}_{ML}^2 = \frac{1}{N} \sum_{k=1}^N (x_k - \mu)^2 \end{split}$$

Assume that N data points, x_1, x_2, \ldots, x_N , are vectors generated from a Gaussian pdf with unknown mean and covariance matrix. Derive the ML estimate of the variance.

$$l(\mu, \Sigma) \equiv \log \prod_{k=1}^{N} p(\mathbf{x}_{k}; \mu) = \sum_{k=1}^{N} \log p(\mathbf{x}_{k}; \mu)$$

$$= \sum_{k=1}^{N} \log \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x}_{k} - \mu)^{T} \Sigma^{-1} (\mathbf{x}_{k} - \mu)\right]$$

$$= -\frac{N}{2} (\log(2\pi^{d} |\Sigma|)) - \frac{1}{2} \sum_{k=1}^{N} (\mathbf{x}_{k} - \mu)^{T} \Sigma^{-1} (\mathbf{x}_{k} - \mu)$$

$$\frac{\partial L(\mu, \Sigma)}{\partial \mu} = 0 \implies \widehat{\mu}_{ML} = \frac{1}{N} \sum_{k=1}^{N} x_k$$

$$\frac{\partial L(\boldsymbol{\mu},\boldsymbol{\Sigma})}{\partial \boldsymbol{\Sigma}} = 0 \Rightarrow \widehat{\boldsymbol{\Sigma}}_{ML} = \frac{1}{N} \boldsymbol{\Sigma}_{k=1}^{N} (\boldsymbol{x}_{k} - \widehat{\boldsymbol{\mu}}_{ML}) (\boldsymbol{x}_{k} - \widehat{\boldsymbol{\mu}}_{ML})^{\mathrm{T}}$$

Maximum Likelihood: An example with three classes (plotcc.m)

Now we have

$$N(\mu_1, \Sigma_1), N(\mu_2, \Sigma_2), N(\mu_3, \Sigma_3)$$

We can compute

$$p(x_{new} | t_{new} = 1, X_1, t_1)$$

 $p(x_{new} | t_{new} = 2, X_2, t_2)$
 $p(x_{new} | t_{new} = 3, X_3, t_3)$

And

$$\sum_{c}^{3} p(\mathbf{x}_{new} | t_{new} = c, \mathbf{X}_c, \mathbf{t}_c) = \mathbf{1}$$

Fit class-conditional Gaussians for each class (plotcc.m)

```
class var = [];
                                                                             >> class_var
                                                 >> class_mean
for c = 1:length(cl)
    pos = find(t==cl(c));
                                                                             class_{var}(:,:,1) =
                                                 class mean =
    % Find the means
    class mean(c,:) = mean(X(pos,:));
                                                                                0.9896
                                                                                       0.0886
                                                   -0.1141
                                                           0.1117
    class var(:,:,c) = cov(X(pos,:),1);
                                                                                0.0886
                                                                                       1.5076
                                                    1.8161
                                                           2.5445
end
                                                    1.6356 -2.1388
%% Plot the contours
for c = 1:length(cl)
                                                                             class_{var}(:,:,2) =
    pos = find(t==cl(c));
    plot(X(pos,1),X(pos,2),col{c},...
                                                                                1.7073
                                                                                       -0.1028
         'markersize',10,'linewidth',2,'markerfacecolor',fcol{c});
                                                                               -0.1028
                                                                                       1.0659
end
xlim([-3 7]), ylim([-6 6])
[Xv, Yv] = meshgrid(-3:0.1:7, -6:0.1:6);
for c = 1:length(c1)
                                                                             class_{var}(:,:,3) =
    temp = [Xv(:)-class\ mean(c,1)\ Yv(:)-class\ mean(c,2)];
    tempc = class var(:,:,c);
                                                                                1.1158
                                                                                       1.0470
    const = -\log(2*pi) - \log(\det(tempc));
                                                                                1.0470
                                                                                       1.1917
    Probs = exp(const - 0.5*diag(temp*inv(tempc)*temp'));
    contour(Xv, Yv, reshape(Probs, size(Xv)));
```

end

Bayes' Rule

Joint, and Conditional Probability

- $p(A \cap B)$: the joint probability of the events A and B.
- A conditional probability measure p(A|B) is defined by

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

• Similarly,

$$p(B|A) = \frac{p(B \cap A)}{p(A)}$$

• Therefore

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Total Probability

- Let A_1, A_2, \dots, A_n be n mutually exclusive events, i.e., $A_i \cap A_j = \emptyset$, $i \neq j$, and $\bigcup_{i=1}^n A_i = \Omega$ (sample space)
- Let B be any event so that

$$B = B \cap \bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} (B \cap A_i)$$

$$\Rightarrow p(B) = \sum_{i=1}^{n} p(B \cap A_i) = \sum_{i=1}^{n} p(B|A_i)p(A_i)$$

Bayes' Theorem

Now

$$p(A_i|B) = \frac{p(B|A_i)p(A_i)}{p(B)} = \frac{p(B|A_i)p(A_i)}{\sum_{i=1}^{n} p(B|A_i)p(A_i)}$$

• Therefore

$$p(t_{new} = c | \mathbf{x}_{new}, X, t) = \frac{p(\mathbf{x}_{new} | t_{new} = c, X_c, t_c) p(t_{new} = c | X_c, t_c)}{\sum_{c'=1}^{3} p(\mathbf{x}_{new} | t_{new} = c', X_{c'}, t_{c'}) p(t_{new} = c' | X_{c'}, t_{c'})}$$

$$= \frac{\mathbf{likelihood} \times \mathbf{prior}}{\mathbf{Evidence}}$$

Example

Assume a certain class is given a midterm exam.

S: the event that a student studied, P(S)=0.7

P(a student pass the exam |S| = P(A|S) = 0.9

P(a student pass the exam $|S^c| = P(A|S^c) = 0.05$

Given that a student did not pass the exam, what is the probability that she or he studied?

$$P(S|A^c) = \frac{P(A^c \cap S) = P(A^c|S)P(S)}{P(A^c) = P(A^c \cap S) + P(A^c \cap S^c)}$$

$$= \frac{P(A^c|S)P(S)}{P(A^c|S)P(S)+P(A^c|S^c)P(S^c)}$$

$$=\frac{(1-0.9)*0.7}{(1-0.9)*0.7+(1-0.05)*(1-0.7)}=\frac{0.07}{0.335}=19.7\%$$

Making prediction

- Since we can use the known $N(\mu_1, \sum_1)$, $N(\mu_2, \sum_2)$, and $N(\mu_3, \sum_3)$ to compute $p(x_{new}|t_{new}=1, X_1, t_1)$, $p(x_{new}|t_{new}=2, X_2, t_2)$ and $p(x_{new}|t_{new}=3, X_3, t_3)$
- If we assume the prior $p(t_{new} = c | X_c, t_c) = \frac{N_c}{N_1 + N_2 + N_3}$
- Therefore

$$p(t_{new} = c | x_{new}, X, t) = \frac{p(x_{new} | t_{new} = c, X_c, t_c) p(t_{new} = c | X_c, t_c)}{\sum_{c'=1}^{3} p(x_{new} | t_{new} = c', X_{c'}, t_{c'}) p(t_{new} = c' | X_{c'}, t_{c'})}$$

$$= \frac{N(x_{new}; \mu_c, \sum_c) \frac{N_c}{N_1 + N_2 + N_3}}{\sum_{c'=1}^{3} N(x_{new}; \mu_{c'}, \sum_{c'}) \frac{N_{c'}}{N_1 + N_2 + N_3}}$$

Making prediction (bayesclass.m)


```
%% bayesclass.m: Compute the predictive probabilities
                                                                    p(t_{new} = c | X_c, t_c) = 1/3
[Xv, Yv] = meshgrid(-3:0.1:7, -6:0.1:6);
Probs = [];
for c = 1:length(c1)
    temp = [Xv(:)-class\ mean(c,1)\ Yv(:)-class\ mean(c,2)];
    tempc = class var(:,:,c);
    const = -\log(2*pi) - \log(\det(tempc));
    Probs(:,:,c) = reshape(exp(const - 0.5*diag(temp*inv(tempc)*temp')),size(Xv));
end
Probs = Probs./repmat(sum(Probs, 3), [1, 1, 3]);
                                        p(t_{new} = c | x_{new}, X, t) = \frac{N(x_{new}; \mu_c, \sum_c) \frac{N_c}{N_1 + N_2 + N_3}}{\sum_{c'=1}^{3} N(x_{new}; \mu_{c'}, \sum_{c'}) \frac{N_{c'}}{N_1 + N_2}}
 %% Plot the predictive contours
figure (2);
for i = 1:3
    subplot(1,3,i);
    hold off
    for c = 1:length(cl)
         pos = find(t==cl(c));
         plot(X(pos,1),X(pos,2),col{c},...
               'markersize',10,'linewidth',2,'markerfacecolor',fcol{c});
         hold on
    end
    xlim([-3 7]), ylim([-6 6])
    contour(Xv, Yv, Probs(:,:,i));
    ti = sprintf('Probability contours for class %g',i); title(ti);
end
```

$$\boldsymbol{x}_{new} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ t_{new} = p(t_{new} = \boldsymbol{c} | \boldsymbol{x}_{new}, \boldsymbol{X}_{\boldsymbol{c}}, \boldsymbol{t}_{\boldsymbol{c}}) = ?$$

<i>C</i>	$p(\mathbf{x}_{new} \mathbf{t}_{new} = \mathbf{c}, \mathbf{X}_{\mathbf{c}}, \mathbf{t}_{\mathbf{c}})$	$p(t_{new} = c X_c, t_c)$	$\frac{p(\mathbf{x}_{new} t_{new} = c, X_c, t_c)}{\sum_{c'=1}^{3} p(\mathbf{x}_{new} t_{new} = c', X_{c'}, t_{c'})}$
1	0.0109	0.333	0.7072
2	0.0042	0.333	0.2741
3	0.0003	0.333	0.0187

bayesclass_x_new.m

```
%% bayesclass_x_new.m: Repeat without Naive assumption
class var = [];
for c = 1:length(c1)
    pos = find(t==cl(c));
    % Find the means
    class mean(c,:) = mean(X(pos,:));
    class var(:,:,c) = cov(X(pos,:),1);
end
%% Compute the predictive probabilities
Xv=2;
Yv=0:
Probs = [];
for c = 1:length(cl)
    temp = [Xv(:)-class\ mean(c,1)\ Yv(:)-class\ mean(c,2)];
    tempc = class var(:,:,c);
    const = -\log(2*pi) - \log(\det(tempc));
    Probs(:,:,c) = reshape(exp(const -
0.5*diag(temp*inv(tempc)*temp')), size(Xv));
end
[Probs(:,:,1) Probs(:,:,2) Probs(:,:,3) sum(Probs,3)]% 分子 與 分母
Probs = Probs./repmat(sum(Probs, 3), [1, 1, 3])
```

The naive-Bayes assumption

The naive-Bayes assumption

- Fitting a 2-D Gaussian requires 5 parameter: 2 for μ_c , and 3 for Σ_c .
- → feasible for 30 training points in each class.
- But fitting a D-dimensional Gaussian requires D + D + D(D 1)/2 parameters.
- → For 10 dimensions, 30 data points are not sufficient to fit 65 parameters.
- Naive Bayes assumption: the class-conditional distributions can be factorized into a product of univariate distributions.

- → cannot model any within-class dependencies
- → 10-dimensional Gaussian requires 20 parameters instead of 65

Maximum Likelihood: An example with three classes

Now we have

$$N(\mu_1, \sigma_1^2 I), N(\mu_2, \sigma_2^2 I), N(\mu_3, \sigma_3^2 I)$$

We can compute

$$p(x_{new} | t_{new} = 1, X_1, t_1)$$

 $p(x_{new} | t_{new} = 2, X_2, t_2)$
 $p(x_{new} | t_{new} = 3, X_3, t_3)$

And

$$\sum_{c=1}^{3} p(x_{new} | t_{new} = c, X_c, t_c) = 1$$


```
%% Fit class-conditional Gaussians for each class
% Using the Naive (independence) assumption
for c = 1:length(c1)
    pos = find(t==cl(c));
    % Find the means
    class mean(c,:) = mean(X(pos,:));
    class var(c,:) = var(X(pos,:),1);
end
%% Plot the contours
[Xv, Yv] = meshgrid(-3:0.1:7, -6:0.1:6);
for c = 1:length(c1)
    temp = [Xv(:)-class_mean(c,1) Yv(:)-class_mean(c,2)];
    tempc = diag(class var(c,:));
    const = -\log(2*pi) - \log(\det(tempc));
    Probs = exp(const - 0.5*diag(temp*inv(tempc)*temp'));
    contour(Xv, Yv, reshape(Probs, size(Xv)));
end
```

Making prediction (bayesclass_naive.m)

Although the class-conditional distribution $p(x_i|t_i=3,X_3,t_3)$ for class 3 is not particularly appropriate, the classification contours are still reasonable

```
%% Compute the predictive probabilities
[Xv, Yv] = meshgrid(-3:0.1:7, -6:0.1:6);
Probs = [];
for c = 1:length(cl)
    temp = [Xv(:)-class\ mean(c,1)\ Yv(:)-class\ mean(c,2)];
    tempc = diag(class var(c,:));
    const = -\log(2*pi) - \log(\det(tempc));
    Probs(:,:,c) = reshape(exp(const - 0.5*diag(temp*inv(tempc)*temp')), size(Xv));
end
Probs = Probs./repmat(sum(Probs, 3), [1, 1, 3]);
%% Plot the predictive contours
for i = 1:3
    subplot(1,3,i);
    for c = 1:length(c1)
        pos = find(t==cl(c));
        plot(X(pos,1),X(pos,2),col{c},...
            'markersize',10,'linewidth',2,'markerfacecolor',fcol{c});
        hold on
    end
    xlim([-3 7]), ylim([-6 6])
    contour(Xv, Yv, Probs(:,:,i));
    ti = sprintf('Probability contours for class %g',i);
    title(ti);
end
```

Summary

- We assume the class-conditional distribution $p(x_i|t_i=c,X_c,t_c)$ is a multivariate Gaussian $N(\mu_c, \Sigma_c)$
- $\hat{\mu}_c = \frac{1}{N} \sum_{k=1}^N x_k$ and $\hat{\sum}_c = \frac{1}{N} \sum_{k=1}^N (x_k \hat{\mu}_c)(x_k \hat{\mu}_c)^T$ are the empirical mean and covariance computed from maximizing likelihood function.
- We make prediction using Bayes' rule

$$p(t_{new} = c | x_{new}, X, t) = \frac{N(x_{new}; \mu_c, \sum_c) \frac{N_c}{N_1 + N_2 + N_3}}{\sum_{c'=1}^3 N(x_{new}; \mu_{c'}, \sum_{c'}) \frac{N_{c'}}{N_1 + N_2 + N_3}}$$

• Use Naïve assumption to reduce the number of estimated parameters

Remark: Discriminant Analysis

Assume $p(x_i|t_i=c, X_c, t_c)$ are Gaussian densities,

- 1. the same $\sum_{c} = \sum_{c} \sum_{c} = \sum_{c} \sum_{c}$
- 2. different \sum_c in each class, we get quadratic discriminant analysis.
- 3. \sum_c are diagonal, i.e., conditional independence in each class ,we get naïve Bayes.