
Tree-Based Methods

生醫光電所 吳育德

A Concise Introduction to Machine Learning, 2020 Anita C. Faul, Chapter 5

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning, Chapter 8



• Decision Trees are binary trees consisting of 

• non-terminal nodes having two branches,

• terminal nodes or leaves which are assigned a class.

• A sample enters the tree at the root node at the top. 

• At each node, a decision is made whether the value of a particular 

feature is larger or smaller than a threshold. 

• The sample traverses the tree down to a leaf and assigned that class.

Decision Trees



Top Left: A partition of  2D feature 

space that could not result from 

recursive binary splitting. 

Top Right: The output of recursive 

binary splitting on a 2D example. 

Bottom Left: A tree corresponding 

to the partition in the top right panel. 

Bottom Right: A perspective plot of 

the prediction surface corresponding 

to that tree.

four internal nodes 

five terminal nodes



Classification Trees
• Predict that each observation belongs to the most commonly occurring 

class of training observations in the region.

• Use the recursive binary splitting to grow a classification tree.

• Gini index 

𝐺 = 

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘(1 − Ƹ𝑝𝑚𝑘) = 1 −

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘
2 ,

a measure of total variance (impurity) across K classes. Ƹ𝑝𝑚𝑘 represents the 
proportion of training observations in the 𝑚th region from the 𝑘th class

• Gini index is a measure of node purity—a small value indicates that a 
node contains predominantly observations from a single class.
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Entropy
• An alternative to the Gini index is entropy, given by

𝐻 = −

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘 log Ƹ𝑝𝑚𝑘

• It turns out that the Gini index and the cross-entropy are quite similar 
numerically.
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Select the feature producing the highest Information gain

1. Compute entropy for a dataset with respect to a target feature

𝐻(𝑡, 𝐷) = − 

𝑙∈𝑙𝑒𝑣𝑒𝑙𝑠(𝑡)

(𝑃(𝑡 = 𝑙) × 𝑙𝑜𝑔2(𝑃(𝑡 = 𝑙)))

where levels(t) is the set of levels of the target feature t, and P(t = l) is the

probability of a randomly selected instance having the target feature level l.

2. Use a particular feature d  to create partitions 𝐷𝑑=𝑙1 , ⋯ , 𝐷𝑑=𝑙𝑘 , where 𝑙1, ⋯ , 𝑙𝑘 are the k 

levels that feature d can take. Each partition, 𝐷𝑑=𝑙𝑖, contains the instances in that have a 

value of level 𝑙𝑖 for the d feature. Compute the entropy remaining after partition 

𝑟𝑒𝑚(𝑡, 𝐷) = 

𝑙∈𝑙𝑒𝑣𝑒𝑙𝑠(𝑡)

|𝐷𝑑=𝑙|

|𝐷|
weighting

× 𝐻(𝑡, 𝐷𝑑=𝑙)
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐷𝑑=𝑙

3. Information gain made from splitting the dataset using the feature d

𝐼𝐺 𝑡, 𝐷 = 𝐻 𝑡, 𝐷 − 𝑟𝑒𝑚(𝑡, 𝐷)



Choose a color feature to classify the shapes 
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Example 1

A convicted criminal who reoffends after release is known as a recidivist.

The dataset describes prisoners released on parole, and whether they 

reoffended within two years of release.

Chap4. Exercise 2. John D. Kelleher, Brian Mac Namee, Aoife D’Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR 

PREDICTIVE DATA ANALYTICS, 2015



• The first step: figure out which of the three features is the best 

one on which to split the dataset at the root node (i.e., which 

descriptive feature has the highest information gain). 

• The total entropy for this dataset is

Chap4. Exercise 2. John D. Kelleher, Brian Mac Namee, Aoife D’Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR 

PREDICTIVE DATA ANALYTICS, 2015



The table below illustrates the information gain for features:

No further split

=0*2/6+.8113*4/6

=0*1/6+.9709*5/6

=1.00-0.9183

=1.00-0.5409

=1.00-0.8091

𝐻 Recidivist

= −
2

2
𝑙𝑜𝑔2

2

2
= 0

Partition Entropy

𝐻 Recidivist = −
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4
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4
−
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4
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3

4

= 0.81130
Partition Entropy

true:1/4

False:3/4

true:2/2



• The dataset on the right branch of the tree (D4) is not homogenous, so we 

need to grow this branch of the tree. The entropy for this dataset, D4, is:

=0.8113-0.4591

=0.8113-0



AGE <30 = false,

DRUG DEPENDENT = true

GOOD BEHAVIOR = false,

RECIDIVIST = true

No further split

AGE <30 = true,

GOOD BEHAVIOR = true,

DRUG DEPENDENT = false

RECIDIVIST = true



Example 2

OCCUPATION :

transport = works in the transportation industry; 

professional= doctors, lawyers, etc.; 

agriculture = works in the agricultural industry; 

armed forces = is a member of the armed forces;

Chap4. Exercise 3. John D. Kelleher, Brian Mac Namee, Aoife D’Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR 

PREDICTIVE DATA ANALYTICS, 2015



Calculate the entropy:

Calculate the Gini index:



First sort the instances according to the AGE feature:

The mid-points in the AGE values that are 

adjacent in the new ordering but that have 

different target levels define the possible

threshold points: 26, 39.5, and 45.

26

39.5

45



Chap4. Exercise 3. John D. Kelleher, Brian Mac Namee, Aoife D’Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR 

PREDICTIVE DATA ANALYTICS, 2015

Split by P artitio n Info. 

Feature Level Instances Entropy Rem. Gain 

high school d3,dS,d6 ,d7 1.0 
EOUCATION bachelors d l ,d2,d3 。 0.5 0.7988 

doctorate d 8 。
never married d l ,d3 ,d6 0.9183 

MARITAL STATUS married d2, d4, dS, d 8 0.8113 0.75 0.5488 
divorced d7 。
transport d l , d7 。

OCCUPATION 
professional d2,d4,d8 0.9183 

0.5944 。.7044
αgriculture d3,dS 1.0 
αrmedfo陀es d6 。



Finish the tree splitting of Example 2. 

Homework 1



Homework 2

Consider the following n = 16 points in two dimensions, training a binary 

tree using the entropy impurity. 

1. Plot the points of ω1 and points of ω2 in the 2D  x1-x2 plane.

2. Provide the step-by-step split feature Table similar to Example 1. 

3. Illustrate the recursive binary splitting on the 2D x1-x2 plane.

ω1 (black) ω2 (red)

x1 x2 x1 x2

.15 .83 .10 .29

.09 .55 .08 .15

.29 .35 .23 .16

.38 .70 .70 .19

.52 .48 .62 .47

.57 .73 .91 .27

.73 .75 .65 .90

.47 .06 .75 .36



• 安德森鳶尾花卉數據集（Anderson's Iris data set），也稱鳶尾花卉
數據集（Iris flower data set）或費雪鳶尾花卉數據集（Fisher's Iris 

data set），是一類多重變量分析的數據集。
• 它最初是埃德加·安德森（Edgar Anderson）從加拿大加斯帕半島

上的鳶尾屬花朵中提取的形態學變異數據，後由羅納德·費雪作為
判別分析的一個例子，運用到統計學中。

• 其數據集包含了150個樣本，都屬於鳶尾屬下的三個亞屬，分別是
山鳶尾、變色鳶尾和維吉尼亞鳶尾（Virginia Iris）。

• 四個特徵被用作樣本的定量分析，它們分別是花萼和花瓣的長度和
寬度。

https://zh.wikipedia.org/wiki/%E5%AE%89%E5%BE%B7%E6%A3%AE%E9%B8%A2%E5%B0%BE%E8%8A%B1%E5%8
D%89%E6%95%B0%E6%8D%AE%E9%9B%86

安德森鳶尾花卉數據集

https://zh.wikipedia.org/w/index.php?title=%E5%9F%83%E5%BE%B7%E5%8A%A0%C2%B7%E5%AE%89%E5%BE%B7%E6%A3%AE&action=edit&redlink=1
https://en.wikipedia.org/wiki/Edgar_Anderson
https://zh.wikipedia.org/wiki/%E5%8A%A0%E6%96%AF%E5%B8%95%E5%8D%8A%E5%B2%9B
https://zh.wikipedia.org/wiki/%E9%B8%A2%E5%B0%BE%E5%B1%9E
https://zh.wikipedia.org/wiki/%E5%BD%A2%E6%85%8B%E5%AD%B8_(%E7%94%9F%E7%89%A9%E5%AD%B8)
https://zh.wikipedia.org/wiki/%E7%BE%85%E7%B4%8D%E5%BE%B7%C2%B7%E8%B2%BB%E9%9B%AA
https://zh.wikipedia.org/wiki/%E5%88%A4%E5%88%A5%E5%88%86%E6%9E%90
https://zh.wikipedia.org/wiki/%E9%B8%A2%E5%B0%BE%E5%B1%9E
https://zh.wikipedia.org/wiki/%E5%B1%B1%E9%B8%A2%E5%B0%BE
https://zh.wikipedia.org/wiki/%E5%8F%98%E8%89%B2%E9%B8%A2%E5%B0%BE
https://zh.wikipedia.org/w/index.php?title=%E7%BB%B4%E5%90%89%E5%B0%BC%E4%BA%9A%E9%B8%A2%E5%B0%BE&action=edit&redlink=1
https://en.wikipedia.org/wiki/Virginia_Iris
https://zh.wikipedia.org/wiki/%E8%8A%B1%E8%90%BC
https://zh.wikipedia.org/wiki/%E8%8A%B1%E7%93%A3
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% Fishertree.m from A Concise Introduction to Machine Learning, 2020 Anita C. Faul

load fisheriris

% Extract two attributes.

sl = meas(:,1); % sepal length

sw = meas(:,2); % sepal width

X = [sl,sw];

% Create classifier.

% The depth of a decision tree is governed by three arguments:

% Maximum number of branch node splits; a large value results in a deep tree.

MaxNumSplits = size(X,1) - 1;

% Minimum number of samples per branch node; a small number results in a deep tree.

MinParentSize = 5;

% Minimum number of samples per leaf; a small number results in a deep tree.

MinLeafSize = 1;

treeModel = fitctree(X,species,...

'MaxNumSplits',MaxNumSplits,...

'MinLeafSize',MinLeafSize,...

'MinParentSize',MinParentSize);

view(treeModel,'mode','graph') % visualization



% Lay grid over the region

d = 0.01;

[x1Grid,x2Grid] = meshgrid(4:d:8.2,1.5:d:4.5);

xGrid = [x1Grid(:),x2Grid(:)];  N = size(xGrid,1);

% For each grid point calculate the score of each class.

% 'predict' returns the predicted class labels corresponding to the 

% minimum misclassification cost, the score (posterior probability) 

% for each class as well as the predicted node number and class number.

[~,score,~,~] = predict(treeModel,xGrid);

% Classify according to the maximum score.

[~,maxScore] = max(score,[],2);

% Plot classifier regions.

figure

h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...

[0.5 0.5 0.5; 0.7 0.7 0.7; 0.9 0.9 0.9]);

hold on

% Plot data.

h(4:6) = gscatter(sl, sw, species,'rgb','os^');

xlabel('Sepal length'); ylabel('Sepal width');

legend(h,{'Setosa region','Versicolor region','Virginica region',...

'Setosa','Versicolor','Virginica'},'Location','Southeast');

axis([4 8.2 1.5 4.5])



Tree Versus Linear Models

Top Row: A 2D classification example in which the true decision boundary is linear, and is indicated 

by the shaded regions. A classical approach that assumes a linear boundary (left) will outperform a 

decision tree that performs splits parallel to the axes (right). 

Bottom Row: Here the true decision boundary is non-linear. Here a linear model is unable to capture

the true decision boundary (left), whereas a decision tree is successful (right).



Advantages and Disadvantages of Trees
▲ Easy to explain to people !

▲ More closely mirror human decision making.

▲ Can be displayed graphically and easily interpreted even by a non-expert.

▲ Can easily handle qualitative predictors without creating dummy variables.

▼ Generally do not have the same level of predictive accuracy as some of 
the other classification approaches.

By aggregating many decision trees, the predictive performance of trees can 
be substantially improved. 



Bagging

• The bootstrap is an extremely powerful idea. It is used in many 

situations in which it is hard or even impossible to directly compute 

the standard deviation of a quantity of interest.

• Bootstrap aggregation, or bagging, is a general-purpose procedure for 

reducing the variance of a statistical learning method.



Example with just 3 observations

A graphical illustration of the bootstrap approach on a small sample containing 

n =3 observations. Each bootstrap data set contains n observations, sampled with replacement 
from the original data set. Each bootstrap data set is used to obtain an estimate of α



Results

Left: A histogram of the estimates of α obtained by generating 1,000 simulated data
sets from the true population. Center: A histogram of the estimates of α obtained
from 1,000 bootstrap samples from a single data set. Right: The estimates of α
displayed in the left and center panels are shown as boxplots. In each panel, the pink
line indicates the true value of α.



Bagging classification trees

• Bootstrap by taking repeated samples from the training data set.

• First generate b different bootstrapped training data sets. 

• Then train the jth bootstrapped training set to get the predictions 
𝒙 at φ𝑗 𝒙 . 

• We then average all the predictions to obtain 

𝑓 ←
1

𝑏


𝑗=1

𝑏

φ𝑗(𝒙)

This is called bagging.

• For each test observation, we record the class predicted by each of the 
j trees, and take a majority vote: the overall prediction is the most 
commonly occurring class among the B predictions.



% A decision stump is a depth-one version of a decision tree.
% tree_stump.m
x=randn(50,2);

y=2*(x(:,1)>x(:,2))-1;

X0=linspace(-3,3,50); 

[X(:,:,1) X(:,:,2)]=meshgrid(X0);

d=ceil(2*rand); 

[xs,xi]=sort(x(:,d));

el=cumsum(y(xi)); 

eu=cumsum(y(xi(end:-1:1)));

e=eu(end-1:-1:1)-el(1:end-1); 

[em,ei]=max(abs(e));

c=mean(xs(ei:ei+1)); 

s=sign(e(ei)); 

Y=sign(s*(X(:,:,d)-c));

figure(1); clf; hold on; axis([-3 3 -3 3]);

colormap([1 0.7 1; 0.7 1 1]); contourf(X0,X0,Y);

plot(x(y==1,1),x(y==1,2),'bo');

plot(x(y==-1,1),x(y==-1,2),'rx');

MATLAB code for decision stump classification.

Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016



1. For 𝑗 = 1,⋯ , 𝑏
(a) Randomly choose n samples from {(𝒙𝑖 , 𝑦𝑖)}𝑖=1

𝑛

with replacement.
(b) Train a classifier φ𝑗 with the randomly   

resampled data set.

2. Output the average of {φ𝑗}𝑗=1
𝑏 as the final 

solution f :

𝑓 ←
1

𝑏


𝑗=1

𝑏

φ𝑗(𝒙)

Bagging for decision stumps

Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016



Example of bagging for decision stumps

Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016
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% bagging for decision stumps

% bagging.m

n=50; x=randn(n,2); 

y=2*(x(:,1)>x(:,2))-1;

b=5000; a=50; Y=zeros(a,a);

X0=linspace(-3,3,a); 

[X(:,:,1) X(:,:,2)]=meshgrid(X0);

for j=1:b

db=ceil(2*rand); 

r=ceil(n*rand(n,1));

xb=x(r,:); yb=y(r); 

[xs,xi]=sort(xb(:,db));

el=cumsum(yb(xi)); 

eu=cumsum(yb(xi(end:-1:1)));

e=eu(end-1:-1:1)-el(1:end-1);

[em,ei]=max(abs(e)); c=mean(xs(ei:ei+1));

s=sign(e(ei)); 

Y=Y+sign(s*(X(:,:,db)-c))/b;

end

figure(1); clf; hold on; axis([-3 3 -3 3]);

colormap([1 0.7 1; 0.7 1 1]); contourf(X0,X0,sign(Y));

plot(x(y==1,1),x(y==1,2),'bo');

plot(x(y==-1,1),x(y==-1,2),'rx');

Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016



Random Forests
• Random forests provide an improvement over bagged trees by way of a 

random small tweak that decorrelates the trees. This reduces the variance 
when we average the trees.

• As is bagging, we build a number of decision trees on bootstrapped 
training samples.

• Each time a split in a tree, a random selection of m predictors is chosen as 
split candidates from the full set of 𝑝 predictors. The split is allowed to use 
only one of those 𝑚 predictors.

• A fresh selection of 𝑚 predictors is taken at each split, and typically we 
choose 𝑚 ≈ 𝑝—that is, the number of predictors considered at each split 
is approximately equal to the square root of the total number of predictors. 

For regression purpose, use 𝑚 ≈
𝑝

3
.



Out-of-Bag Error Estimation

• There is a very straightforward way to estimate the test error of a bagged
model.

• The key to bagging is that trees are repeatedly fit to bootstrapped subsets of
the observations. On average each bagged tree makes use of around two-
thirds of the observations.

• The remaining one-third of the observations not used to fit a given bagged
tree are referred to as the out-of-bag (OOB) observations.

• We can predict the response for the 𝑖th observation using each of the trees
in which that observation was OOB. This will yield around b/3 predictions
for the 𝑖th observation, which we average.



The table lists the details of five participants in a heart disease study, and a target 

feature RISK which describes their risk of heart disease. 

Each patient is described in terms of four binary descriptive features

• EXERCISE, how regularly do they exercise

• SMOKER, do they smoke

• OBESE, are they overweight

• FAMILY, did any of their parents or siblings suffer from heart disease

Example of Random Forest



Step 1. Generate bootstrap samples and random selection of m=2 features

The entropy calculation for Sample A: The entropy calculation for Sample B: The entropy calculation for Sample C:



Step 2. Grow a tree from each bootstrap sample

Split by Parti tion Info. f K\ERClSE 
Feature Level Instances Entropy Re m. Ga in 

dαily dl 。
EXERClSE weekly d2,d2 。 。 0.72 19 

rarely d5,d5, 。
yes d l ,d2,d2 0.9183 low high high 

FAMILY 0.5510 0. 1709 
no d5,<15 。

-蟬-------------------圖，圖，圖--------------------臨圖，圖，圖- -
Split by 
Fealu l'e 

SMOKER 

OBESE 

Level 

true 
false 

true 
false 

lnstances 

d2‘ d2,d4. dS 

d4.dS 
d ) ,d2. d2 

PaJ1ition 
Entropy 

。
。
。0.9183 

Rem. 

。

0.5510 

Info. 
Gain 

0.721 9 

0.1 709 
high low 

----------------------------------------------Spli t by 
Feature 

OBESE 

FAMILY 

Level 

true 
fα:lse 

yes 
no 

Instances 

d4 ,d5 
d 1. d 1, d2 

d ( ,d l ,d2,d4 
d5 

Partiti on 
Entropy 

。
0.9 183 

1.0 

。

Rem. 

0.5510 

0.8 

Info. 
Gain 

0.4200 

0. 1709 



Step 3. Compute Out-of-Bag Error 

• The observations not used to fit a given bagged tree are the out-of-bag

(OOB) observations.

• ID=3, EXERCISE= daily, SMOKER=false, OBESE= false, FAMILY= no

Each of the trees in the ensemble will vote as follows:

• Tree 1: EXERCISE= daily  RISK=low

• Tree 2: SMOKER=false RISK=low

• Tree 3: OBESE= false  RISK=low

So, the majority vote is for RISK=low, same with the target RISK=low



Assuming the random forest model you have created uses majority 

voting, what prediction will it return for the following query:

EXERCISE=rarely, SMOKER=false, OBESE=true, FAMILY=yes

Each of the trees in the ensemble will vote as follows:

• Tree 1: EXERCISE=rarely RISK=high

• Tree 2: SMOKER=false RISK=low

• Tree 3: OBESE=true RISK=high

So, the majority vote is for RISK=high

Step 4. Make prediction
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Algorithm 8.4 The random forests algorithm. 

1. Given a training set (抖 ， Zj ) ， i = 1, . . . , n, of pattems X j and labels Z j . Spec ify the number 
of trees in the forest, B , and the number of random features to select, m. 

2. For b = 1, . . . , B, 

(a) Generate a bootstrap sample of size n by sampling with replacement from the training 
set; some patterns wiII be replicated , others wiII be orrtitted. 

(b) Design a decision tree classi自己凡的(X) using the bootstrap sample as training data, 
random]y selecting at each node in the tree m variables to consider for splitting. 

(c) Classify the nonbootstrap patterns (the ‘out-of-bag ' data) using the classifierηb (X). 

3. Assign X j to the class most represented by the classifiers η/j (x) , where b' refers to the 
bootstrap samples that do not contajn X j . 



Summary

• Decision trees are simple and interpretable models for regression and 
classification.

• However they are often not competitive with other methods in terms 
of prediction accuracy.

• Bagging and random forests are good methods for improving the 
prediction accuracy of trees. They work by growing many trees on the 
training data and then combining the prediction of the resulting 
ensemble of trees.

• Random forests is one of the state-of-the-art methods for supervised 
learning. However results can be difficult to interpret.



Additional Tutorial (StatQuest)

Decision tree:  
https://www.youtube.com/watch?v=J4Wdy0Wc_xQ

Random forest: 
Part I https://www.youtube.com/watch?v=J4Wdy0Wc_xQ&t=123s
Part II  https://www.youtube.com/watch?v=sQ870aTKqiM

AdaBoost:
https://www.youtube.com/watch?v=LsK-xG1cLYA

Gradient Boost
Part I https://www.youtube.com/watch?v=3CC4N4z3GJc&t=50s
Part II https://www.youtube.com/watch?v=2xudPOBz-vs
Part III https://www.youtube.com/watch?v=jxuNLH5dXCs

https://www.youtube.com/watch?v=J4Wdy0Wc_xQ
https://www.youtube.com/watch?v=J4Wdy0Wc_xQ&t=123s
https://www.youtube.com/watch?v=sQ870aTKqiM
https://www.youtube.com/watch?v=LsK-xG1cLYA
https://www.youtube.com/watch?v=3CC4N4z3GJc&t=50s
https://www.youtube.com/watch?v=2xudPOBz-vs
https://www.youtube.com/watch?v=jxuNLH5dXCs
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Algorithm 8.2 The Adaboost algorithm. 

1. Initialise the weights Wi = I的， i = 1, . . . , n. 

2. For t = 1, . . . , T , (T is the number of boosting rounds) 

(a) Construct a classifier r}f (x) from the training data with weights Wi , i = 1, . . . , n. 

(b) Calculate et as the sum of the weights Wi co汀esponding to misclassified patterns. 

(c) If et > 0.5 or ef = 0 then terminate the procedure, otherwise set Wj = w/l - et)l的 for
the misclass i自己d patterns and renormalise the weights so that they sum to unity. 

3. For a two-class c lass的缸， in which r}f (x) = 1 i mplies x εωI and r}f (x) = 一 1 implies 
xεω2， form a weighted sum of the classifie悶， ηt ，

有 = t lOg (平) r}t (x) 

and assign X toω1 if 有> O. 


