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Decision Trees

Decision Trees are binary trees consisting of
e non-terminal nodes having two branches,
e terminal nodes or leaves which are assigned a class.

A sample enters the tree at the root node at the top.

At each node, a decision Is made whether the value of a particular
feature is larger or smaller than a threshold.

The sample traverses the tree down to a leaf and assigned that class.
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Top Left: A partition of 2D feature
space that could not result from
recursive binary splitting.

Top Right: The output of recursive
binary splitting on a 2D example.
Bottom Left: A tree corresponding
to the partition in the top right panel.
Bottom Right: A perspective plot of
the prediction surface corresponding
to that tree.




Classification Trees

* Predict that each observation belongs to the most commonly occurring
classof training observations in the region.

 Use the recursive binary splitting to grow a classification tree.
e GInl Index
O AHp A p AH- b
a measure of total variance (impurity) across K classes. NHu represents the

proportion of training observations in the & th region from the ‘®h class

e Ginl Index Is a measure of node purity—a small value indicates that a
node contains predominantly observations from a single class.
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Entropy

 An alternative to the Gini index Is entropy, given by
"0 nHu 1 TRy
e It turns out that the Gini index and the cross-entropy are quite similar
numerically.
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Select the feature producing thdrighestinformation gain
1. Compute entropy for a dataset with respect to a target feature
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where levelgt) is the set of levels of the target feature t, and P(t = |) is the
probability of a randomly selected instance having the target feature level I.

2. Use a particular feature d to create partitions’ O hE hO ,where & FE hét are the k
levels that feature d can take. Each partition, O , contains the instances in that have a
value of level a for the d feature. Compute the entropy remaining after partition
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3. Information gain made from splitting the dataset using the feature d
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Choose a color feature to classify the shapes
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Example 1

A convicted criminal who reoffends after release is known as a recidivist.
The dataset describes prisoners released on parole, and whether they
reoffended within two years of release.

GOOD DRUG
ID BEHAVIOR AGE < 30 DEPENDENT RECIDIVIST
1 false true false true
2 false false false false
3 false frue false true
4 true false false false
S true false true true
6 true false false false

Chap4. Exercise 2. John D. Kelleher, Brian Mac Namee, Aoife D’Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR
PREDICTIVE DATA ANALYTICS, 2015



« The first step: figure out which of the three features is the best
one on which to split the dataset at the root node (i.e., which
descriptive feature has the highest information gain).

* The total entropy for this dataset Is

H (RECIDIVIST, D)
= — Z P(RECIDIVIST = [) x logs (P(RECIDIVIST = [))

/ true,
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= —((3/6 x 1052 /6)) + (3/6 x 10g2(*6) ) ) = 1.00 bit

Chap4. Exercise 2. John D. Kelleher, Brian Mac Namee, Aoife D’Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR
PREDICTIVE DATA ANALYTICS, 2015



The table below illustrates the information gain for features:

Split by Partition Info.

Feature Level Part. Instances Entropy Rem. Gain

GoOoD frue Dl d4,d5,d5 0.9183

9183 . =1.00-0.9183
BEHAVIOR false D5 dy,d>,d3 0.9183 0918 0.0817
AGE < 30 frue D3 di.d3 O 05409 | 0.4591 |=1.00-05400
ﬁlffSE? 'D4 dz,d4,d5,d6 0.8113 —0*2/6+.8113*4/6
DRUG true Ds ds 0

0.8091 0.1909 =1.00-0.8091

DEPENDENT  false Dg di.dy.d3.dy.dg 0.9709 _j+1/6+ 9709%5/6
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Partition Entropy

true:2/2 ID | Goop Benavior | Druc Derenpent | Recoivist
ID | Coop Benavior | Druc Derenpent | Recioivist 7 false false Falsc true-1/4
D3| 1 false false true Dd| 4 true false false False:3/4
false false true 5 true true true
No further split 6 true false false




The dataset on the right branch of the tree (D,) Is not homogenous, so we
need to grow this branch of the tree. The entropy for this dataset, D,, Is:

H (RECIDIVIST, Dy)
_ Z P(RECIDIVIST = [) X log, (P(RECIDIVIST = [))

] rue,
< { fa fm}

= — ((1/4 X 3082(1/4)) + (3/4 X ;032(3/4))) = 0.8113 bits

Split by Partition Info.

Feature Level Part. Instances Entropy Rem. Gain

GooD true D4 dy.ds.dg 0.918295834 0.4501 03507 =08113-04591
BEHAVIOR false Dg d, 0 |

DRUG frue Dy ds 0 0 0.8113 |=08113-0

DEPENDENT  false Dip dy.d4.dg 0




D3

Goop Benavior | Druc Depenpent | RECIDIVIST
false false true
false false true

AGE <30 = false,

DRUG DEPENDENT = true
GOOD BEHAVIOR = false,

A RECIDIVIST = true

AGE <30 = true,

GOOD BEHAVIOR = true,
DRUG DEPENDENT = false

A RECIDIVIST = true

Druc DerENDENT

D9

ID | Goop BEnavior

true

true

Druc DePENDENT

false

D10

false
ID | Goop Benavior | RecmivisT
2 falze false
4 true false
6 true false

true

false

No further split




Example 2

MARITAL ANNUAL
ID AGE EDUCATION STATUS OCCUPATION INCOME
1 3 bachelors never married transport 25K-50K
2 50 bachelors married professional 25K-50K
3 18 high school never married agriculture <25K
4 28 bachelors married professional 25K-50K
S 37 high school married agriculture 25K-50K
6 24 high school never married armed forces < 25K
7 52 high school divorced transport 25K-50K
8 40 doctorate married professional >50K
OCCUPATION :

transport = works in the transportation industry;

professional= doctors, lawyers, etc.;

agriculture = works in the agricultural industry;
armed forces = is a member of the armed forces;

Chap4. Exercise 3. John D. Kelleher, Brian Mac Namee, Aoife D’Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR

PREDICTIVE DATAANALYTICS, 2015



Calculate the entropy:

H (ANNUAL INCOME, D)

_ > P(AN. INC. = I) x logy (P(AN. INC. = [))

<25K,
!E{ ZSK—S{}K.}
>50K

2 J 2 N 5 ] S N | ] |
= — — x logr | — — X logr | — — X logr | —

= 1.2988 bits

Calculate the Gini index:
Gini (ANNUAL INCOME. D)

=1 Y P(AN.INC. = 1)

<25K.
le { ZSK—S{}K.}
>50K



First sort the instances according to the AGE feature:

1D AGE ANNUAL INCOME
3 18 <25K : .
. y <O5K The mid-points in the AGE values that are
1 >3 SSK_50K 26 adjacent in the new ordering but that have
5 37 25K-50K different target levels define the possible
| Sk 22K 0K 39.5 threshold points: 26, 39.5, and 45.
8 40 > 50K
2 50 25K—50K 45
7 52 25K-50K
Split by Partition [nfo.
Feature Partition Instances Entropy Rem. Gain
_ Dy d;.dg 0 i
26 0.4875 |0.8113
- D, dj.dy.dy.ds.d7.dg  0.6500 i
. Dy dy.d3.dy.ds.dg 0.9710 en
39. : : 945 0.3532
=393 D, ds.d7.dg 09033 096 0393
) Ds d;.d3.dy.ds. dg.dg 1.459]

0944 0.204
D, &y d, ) 1.0944  0.2044







Homework 1
Finish the tree splitting of Example 2.



Homework 2

Consider the following n = 16 points in two dimensions, training a binary
tree using the entropy impurity.

1. Plot the points of ¥, and points of ¥, in the 2D Xx;-X, plane.

2. Provide the step-by-step split feature Table similar to Example 1.

3. lllustrate the recursive binary splitting on the 2D x,-X, plane.

¥, (black) ¥, (red)
X, X X, X
15 .83 10 .29
09 .55 .08 .15
29 .35 23 .16
38 .70 .70 .19
52 .48 62 .47
57 .73 91 .27
13 .75 65 .90

47 .06 75 .36
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Iris Data (red=setosa,green=versicolor,blue=virginica)
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% Fishertree.m from A Concise Introduction to Machine Learning, 2020 Anita C. Faul

load fisheriris

% Extract two attributes.

sl = meas(;,1); % sepal length
sw = meas(;,2); % sepal width
X=[ slsw ],

% Create classifier.

% The depth of a decision tree is governed by three arguments:
% Maximum number of branch node splits; a large value results in
MaxNumSplits = size(X,1) - 1

% Minimum number of samples per branch node; a small number results
MinParentSize =5;

% Minimum number of samples per leaf; a small number results in a
MinLeafSize =1,

treeModel = fitctree ( X,species , ...
" MaxNumSplits ', MaxNumSplits , ...
" MinLeafSize ', MinLeafSize |, ...
" MinParentSize ', MinParentSize );
view( treeModel ,' mode', ‘graph ') % visualization

a deep tree.

in a deep tree.

deep tree.



% Lay grid over the region

d =0.01;
[X1Grid,x2Grid] = meshgrid (4:d:8.2,1.5:d:4.5);
xGrid = [x1Grid(:),x2Grid ) N = size(xGrid,1 );

% For each grid point calculate the score of each class.
% 'predict' returns the predicted class labels corresponding to the
% minimum misclassification cost, the score (posterior probability)

% for each class as well as the predicted node number and class
[~,score,~,~] = predict( treeModel,xGrid );
% Classify according to the maximum score.
[~, maxScore | = max(score,[],2 );
% Plot classifier regions.
figure
h(1:3) = gscatter (xGrid (;,1), xGrid (:,2), maxScore, ...
[0.50.50.5;0.70.7 0.7, 0.9 0.9 0.9));
hold on
% Plot data.
h(4:6) = gscatter (sl , sw, species, ‘rgb', "' os™ ),
xlabel ('Sepal length "), ylabel ('Sepal width' );
legend(h,{ 'Setosa region’ , 'Versicolor region' , 'Virginica region’
' Setosa ', 'Versicolor' , " Virginica '}, ' Location ', 'Southeast

axis([4 8.2 1.5 4.5)])

number .

)



Tree VersusL inear Models

| | | | | | | | |
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Top Row: A 2D classification example in which the true decision boundary is linear, and is indicated
by the shaded regions. A classical approach that assumes a linear boundary (left) will outperform a
decision tree that performs splits parallel to the axes (right).

Bottom Row: Here the true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).



Advantages and Disadvantages of Trees
Easy to explain to people !
More closely mirror human decision making.
Can be displayed graphically and easily interpreted even by a non-expert.
Can easily handle qualitative predictors without creating dummy variables.

Generally do not have the same level of predictive accuracy as some of
the other classification approaches.

By aggregating many decision trees, the predictive performance of trees can
be substantially improved.



Bagging

* The bootstrap is an extremely powerful idea. It Is used in many
situations in which it is hard or even impossible to directly compute
the standard deviation of a quantity of interest.

* Bootstrap aggregatiojor bagging is a general-purpose procedure for
reducing the variance of a statistical learning method.



Example with just 3 observations

Obs | X |Y
3 |53 |28 4y
» O
1 43 |24
3 |53 |2
o Tx Ty Obs |X |Y A9 A
5
Oy — O0XY
Y as |54 2 |21 |11 Q= ~9 5 Y .
= Fn ~ B
2 o Oxr — 40
> 121 113 3 |53 |28 o b4 T Y XY
1 43 |24 :
3 |53 |28 :
1
Original Data (Z) :
Obs [ X |Y Y
o
2 |21 |11
2 |21 |11
1 43 |24

A graphical illustration of the bootstrap approach on a small sample containing

n =3 observations. Each bootstrap data set contains n observations, sampled with replacement
from the original data set. Each bootstrap data set is used to obtain an estimate of h



Results
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Left: A histogram of the estimates of a obtained by generating 1,000 simulated data
sets from the true population. Center: A histogram of the estimates of o obtained
from 1,000 bootstrap samples from a single data set. Right: The estimates of o
displayed in the left and center panels are shown as boxplots. In each panel, the pink
line indicates the true value of «.



Baggingclassificationtrees

 Bootstrap by taking repeated samples from the training data set.
 First generate b different bootstrapped training data sets.

 Then train the jth bootstrapped training set to get the predictions
*AQ (o)

* We then average all the predictions to obtain

This i1s called bagging

* For each test observation, we record the class predicted by each of the
trees, and take a majority vote the overall prediction is the most
commonly occurring class among the B predictions.




MATLAB code for decision stump classification

% Adecision stump is a deptbne version of a decision tree

% tree_stump.m
x=randn (50,2);

y=2*(x(:,1)>x(:,2)) - 1;

XO=linspace (- 3,3,50);
[ X(:,:,1) X(:,:,2)]=
d=ceil(2*rand);

[ Xxs,xi ]=sort(x(:,d));
el= cumsum(y(xi));
eu=cumsum(y(xi(end

meshgrid (XO0);

- 1:1)));

e=eu(end -1:-1:1) -el(l:end -1);

[ em,ei]=max(abs(e));
c=mean( xs (ei:ei+l));

s=sign(e(

Y=sign(s *(X(:,:,d)

ei));

- hold

- €));

-33

figure(1); clf

colormap ([10.71;0.7 1 1)),

plot (x(y==1,1),x(y==1,2),
pIOt (X(y:: '1’1)’X(y::

on; axis([
contourf

' bo");

-1,2), "rx"');

-3 3));
(X0,X0,Y):;

Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016



Baggingfor decisionstumps

2‘) For dQ ?rEhm los § Fm Training samples {(®. w) .,
a) Randomly choose n samples from e hu
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(b) Train a classifier ¢ with the randomly sziieiilize ol
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2. Output the average of ¢ as the final ey L eaming Leaming
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Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016






% bagging for decision stumps
% bagging.m
n=50; x=randn(n,2);
y=2*(x(:,1)>X(:,2)) - 1;
b=5000; a=50; Y=zeros( a,a);
XO=linspace (- 3,3,a);
[X(:,:,1) X(:,:,2)]= meshgrid (XO0);
for J=1:b
db=ceil(2*rand);
r=ceil(n*rand(n,1));
xb=x(r,:); yb=y(r);
[Xs,xi]=sort(xb(:,db));
el= cumsum( yb (xi));
eu=cumsum( yb(xi(end: -1:1)));
e=eu(end -1: -1:1) -el(l:end -1);

[ em,ei ]=max(abs(e)); c=mean( Xs (ei:ei+1));
s=sign(e( ei));
Y=Y+sign (s*(X(:,:, db) - ¢))/b;
end
figure(l); clf ;hold on; axis([ -33 -33));
colormap ([10.71;0.7 1 1)), contourf  (X0,X0,sign(Y));
plot (x(y==1,1),x(y==1,2), "'bo");
plot (x(y== -1,1)x(y== -1,2), 'rx");

Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016



Random Forests

 Random forestprovide an improvement over bagged trees by way of a
random small tweak that decorrelateghe trees. This reduces the variance
when we average the trees.

 As Is bagging, we build a number of decision trees on bootstrapped
training samples.

e Each time a split in a tree, a randomselection of npredictorsis chosen as
split candidates from the full set of n predictors. The split is allowed to use
only one of those a predictors.

A fresh selection of a predictors is taken at each split, and typically we
choose a  /M—that is, the number of predictors considered at each split

IS approximately equal to the square root of the total number of predictors.
For regression purpose, use a -



Out-of-Bag Error Estimation

e There iIs a very straightforward way to estimate the test error of a bagged
model.

* The key to bagging is that trees are repeatedly fit to bootstrapped subsets of
the observations. On average each bagged tree makes use of around two-
thirds of the observations.

e The remaining one-third of the observations not used to fit a given bagged
tree are referred to as the out-of-bag (OOB) observations.

* We can predict the response for the "@h observation using each of the trees
In which that observation was OOB. This will yield around b/3 predictions
for the "th observation, which we average.




Example of Random Forest

The table lists the details of five participants in a heart disease study, and a target
feature RISK which describes their risk of heart disease.

Each patient is described in terms of four binary descriptive features

« EXERCISE, how regularly do they exercise

« SMOKER, do they smoke

* OBESE, are they overweight

« FAMILY, did any of their parents or siblings suffer from heart disease

ID EXERCISE SMOKER OBESE FAMILY RISK
I daily false false yes low
2 weekly true false yes high
3 daily false false no low
4 rarely true true yes high
S rarely true true no high




Step 1. Generate bootstrap samplesnd random selection ofm=2 features

ID EXERCISE FAMILY RISK

[D SMOKER OBESE RISK

I daily yes low
2 weekly yes high
2 weekly yes high
5 rarely no high
5 rarely no high

n I M ka o—

false

frue
true
true
true

low
high
high

high
high

ID OBESE FAMILY RISK

Bootstrap Sample A

The entropy calculation for Sample A:

H (RISK, BoostrapSampleA)
= — ). P(RISK=1) x logy (P(RISK = 1))

low.
’E{m‘gh}

1 l 4 4
= — - X lo g2\ — + - X '[og 2\ =
5 TS d S\

= 0.7219 bits

Bootstrap Sample B

H (RISK, BoostrapSampleB)

Y P(RISK = [) x logy (P(RISK = I))
ineh)
— X log»

= 0.7219 bits

- Xlogy | <

The entropy calculation for Sample B:

D

1 false yes low
1 false yes low
2 false yes high
4 true yes high
5 true no high

Bootstrap Sample C

The entropy calculation for Sample C:

H (RISK, BoostrapSampleC)
=— > P(RisK =) x logy (P(RISK = I))

low,
*’E{m‘gh}

- ((Zram () (rom (D))

= 0.9710 bits






Step 3. Compute Outof-Bag Error

 The observations not used to fit a given bagged tree are the out-of-bag
(OOB) observations.

o |D=3, EXERCISE= daily, SMOKER=false, OBESE= false, FAMILY=no

Each of the trees in the ensemble will vote as follows:
* Tree 1: EXERCISE=daily A RISK=low

* Tree 2: SMOKER=falseA RISK=low

* Tree 3: OBESE= false A RISK=low

So, the majority vote is for RISK=low, same with the target RISK=low



Step 4. Make prediction

Assuming the random forest model you have created uses majority
voting, what prediction will it return for the following query:

EXERCISE=rarely, SMOKER=false, OBESE=true, FAMILY=yes

Each of the trees in the ensemble will vote as follows:
* Tree 1: EXERCISE=rarely”A RISK=high

* Tree 2: SMOKER=falseA RISK=low

* Tree 3: OBESE=trueA RISK=high

So, the majority vote Is for RISK=high






Summary

 Decision trees are simple and interpretable models for regression and
classification.

* However they are often not competitive with other methods in terms
of prediction accuracy.

» Bagging and random forests are good methods for improving the
prediction accuracy of trees. They work by growing many trees on the
training data and then combining the prediction of the resulting
ensemble of trees.

« Random forests Is one of the state-of-the-art methods for supervised
learning. However results can be difficult to interpret.



Additional Tutorial (StatQuest)

Decision tree:
https://www.youtube.com/watch?v=J4Wdy0OWcOx

Random forest:
Part | https:// www.youtube.com/watch?v=J4WdyOWc xQ&t=123s
Partll https:// www.youtube.com/watch?v=sQ870aTKqgiM

AdaBoost
https:// www.youtube.com/watch?v=LskKG1cLYA

Gradient Boost

Part | https:// www.youtube.com/watch?v=3CC4N4z3GJc&t=50s
Part Il https:// www.youtube.com/watch?v=2xudP OBz

Partlll https:// www.youtube.com/watch?v=]xuNLH5dXCs



https://www.youtube.com/watch?v=J4Wdy0Wc_xQ
https://www.youtube.com/watch?v=J4Wdy0Wc_xQ&t=123s
https://www.youtube.com/watch?v=sQ870aTKqiM
https://www.youtube.com/watch?v=LsK-xG1cLYA
https://www.youtube.com/watch?v=3CC4N4z3GJc&t=50s
https://www.youtube.com/watch?v=2xudPOBz-vs
https://www.youtube.com/watch?v=jxuNLH5dXCs




