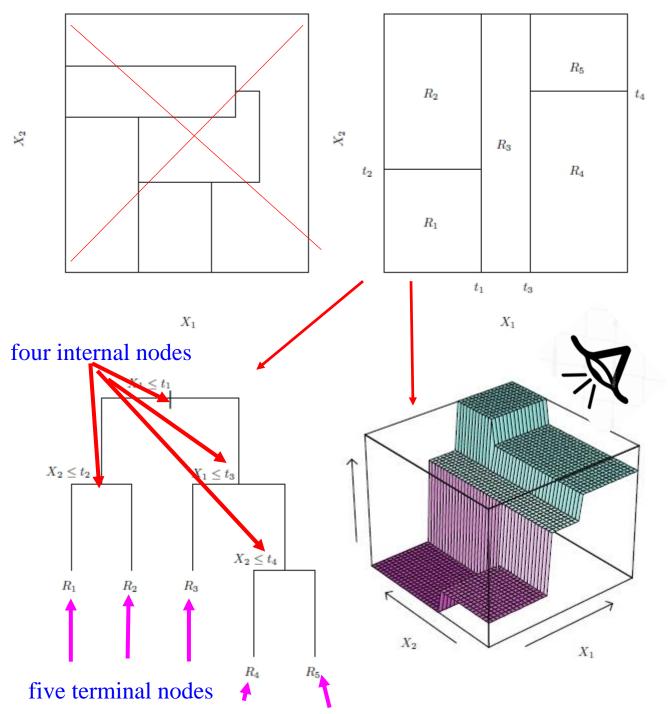
Tree-Based Methods

生醫光電所 吳育德

A Concise Introduction to Machine Learning, 2020 Anita C. Faul, Chapter 5 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning, Chapter 8

Decision Trees

- Decision Trees are binary trees consisting of
 - non-terminal nodes having two branches,
 - terminal nodes or leaves which are assigned a class.
- A sample enters the tree at the root node at the top.
- At each node, a decision is made whether the value of a particular feature is larger or smaller than a threshold.
- The sample traverses the tree down to a leaf and assigned that class.



Top Left: A partition of 2D feature space that could not result from recursive binary splitting. Top Right: The output of recursive binary splitting on a 2D example. **Bottom Left:** A tree corresponding to the partition in the top right panel. Bottom Right: A perspective plot of the prediction surface corresponding to that tree.

Classification Trees

- Predict that each observation belongs to *the most commonly occurring class* of training observations in the region.
- Use the recursive binary splitting to grow a classification tree.
- Gini index

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) = 1 - \sum_{k=1}^{K} \hat{p}_{mk}^{2},$$

a measure of total variance (impurity) across K classes. \hat{p}_{mk} represents the proportion of training observations in the *mth* region from the *k*th class

• Gini index is a measure of node *purity*—a small value indicates that a node contains predominantly observations from a single class.

$$G = \frac{3}{5}\frac{2}{5} + \frac{1}{5}\frac{4}{5} + \frac{1}{5}\frac{4}{5} = \frac{14}{25}$$

$$G = \frac{3}{5}\frac{2}{5} + \frac{1}{5}\frac{4}{5} = \frac{14}{25}$$

$$G = \frac{3}{5}\frac{2}{5} + \frac{2}{5}\frac{3}{5} = \frac{12}{25}$$

$$G = \frac{3}{5}\frac{2}{5} + \frac{2}{5}\frac{3}{5} = \frac{12}{25}$$

$$G = \frac{5}{5}\frac{0}{5} = 0$$

$$G = \frac{5}{5}\frac{0}{5} = 0$$

$$G = \frac{5}{5}\frac{0}{5} = 0$$

$$F = \frac{14}{25}$$

Entropy

• An alternative to the Gini index is *entropy*, given by

$$H = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

• It turns out that the Gini index and the cross-entropy are quite similar numerically.

$$H = -\frac{3}{5}log_{2}\left(\frac{3}{5}\right) - \frac{1}{5}log_{2}\left(\frac{1}{5}\right) - \frac{1}{5}log_{2}\left(\frac{1}{5}\right) = 1.371$$

$$H = -\frac{3}{5}log_{2}\left(\frac{3}{5}\right) - \frac{2}{5}log_{2}\left(\frac{2}{5}\right) = 0.971$$
 less variant
$$H = -\frac{5}{5}log_{2}\left(\frac{5}{5}\right) = 0$$

$$H = -\frac{5}{5}log_{2}\left(\frac{5}{5}\right) = 0$$

$$H = -\frac{5}{5}log_{2}\left(\frac{5}{5}\right) = 0$$

Select the feature producing the highest Information gain

1. Compute entropy for a dataset with respect to a target feature

$$H(t,D) = -\sum_{l \in levels(t)} (P(t = l) \times log_2(P(t = l)))$$

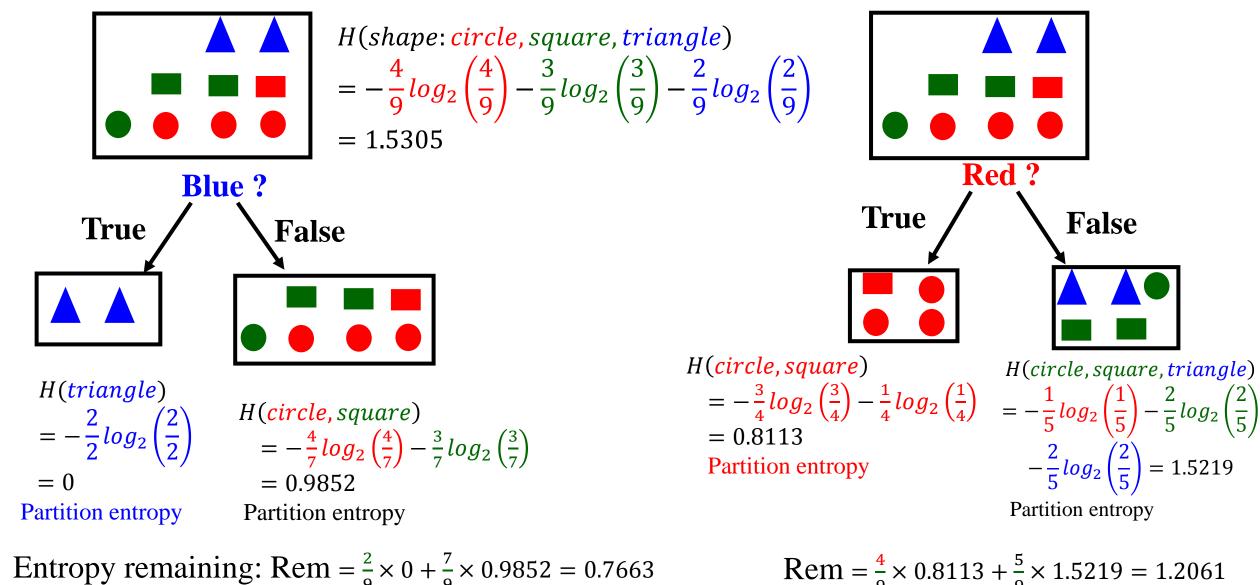
where levels(t) is the set of levels of the target feature *t*, and P(t = l) is the probability of a randomly selected instance having the target feature level *l*.

2. Use a particular feature *d* to create partitions $D_{d=l_1}, \dots, D_{d=l_k}$, where l_1, \dots, l_k are the *k* levels that feature *d* can take. Each partition, $D_{d=l_i}$, contains the instances in that have a value of level l_i for the *d* feature. Compute the entropy remaining after partition

$$rem(t,D) = \sum_{l \in levels(t)} \frac{|D_{d=l}|}{\underbrace{|D|}_{weighting}} \times \underbrace{H(t,D_{d=l})}_{Partition D_{d=l}}$$

3. Information gain made from splitting the dataset using the feature dIG(t,D) = H(t,D) - rem(t,D)

Choose a color feature to classify the shapes



Information gain: IG = $1.5305 - \frac{7}{9} \times 0.9852 = 0.7642$

 $\operatorname{Rem} = \frac{4}{9} \times 0.8113 + \frac{5}{9} \times 1.5219 = 1.2061$ $\operatorname{IG} = 1.5305 - 1.2061 = 0.3244$

Example 1

A convicted criminal who reoffends after release is known as a recidivist. The dataset describes prisoners released on parole, and whether they reoffended within two years of release.

ID	GOOD Behavior	AGE < 30	Drug Dependent	Recidivist
1	false	true	false	true
2	false	false	false	false
3	false	true	false	true
4	true	false	false	false
5	true	false	true	true
6	true	false	false	false

Chap4. Exercise 2. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR PREDICTIVE DATA ANALYTICS, 2015

- The first step: figure out which of the three features is the best one on which to split the dataset at the root node (i.e., which descriptive feature has the highest information gain).
- The total entropy for this dataset is

$$H(\text{RECIDIVIST}, \mathcal{D})$$

$$= -\sum_{l \in \{true, \\ false\}} P(\text{RECIDIVIST} = l) \times \log_2 (P(\text{RECIDIVIST} = l))$$

$$= -\left(\left(\frac{3}{6} \times \log_2(\frac{3}{6})\right) + \left(\frac{3}{6} \times \log_2(\frac{3}{6})\right)\right) = 1.00 \text{ bit}$$

Chap4. Exercise 2. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR PREDICTIVE DATA ANALYTICS, 2015

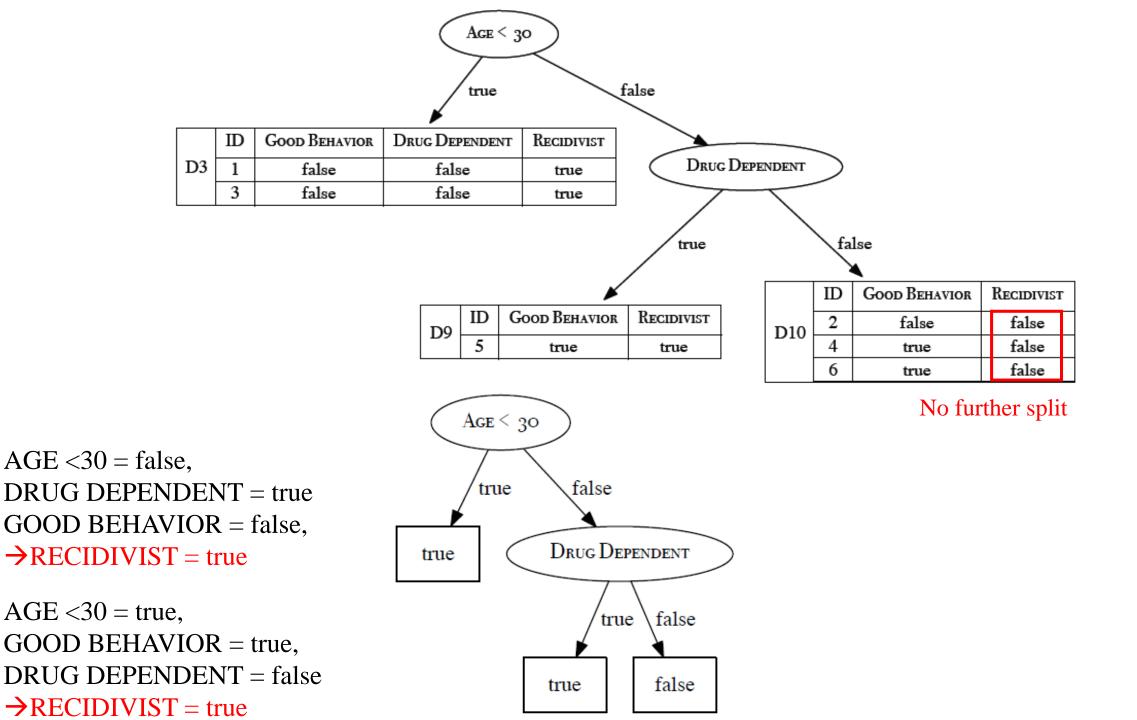
	-	it by ture L	evel F	Part.	Instanc	es		Partition Entropy	Rem.	Info. Gain	
Ē				$\mathcal{D}_1 \\ \mathcal{D}_2$	$d_4, d_5, d_1, d_2, d_1, d_2, d_3$	-		0.9183 0.9183	0.9183	0.0817 =	1.00-0.9183
1	Age	< 30		\mathcal{D}_3 \mathcal{D}_4	d ₁ ,d ₃ d ₂ ,d ₄ ,d ₅			0 0.8113 ₌₀	0.5409 *2/6+.8113*4/6	0.4591 =	1.00-0.5409
D				\mathcal{D}_5 \mathcal{D}_6	\mathbf{d}_5 $\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3, \mathbf{d}_3$	d4,d	6	0		0.1909 =	1.00-0.8091
	=	Recidivist) $-\frac{2}{2}log_2\left(\frac{2}{2}\right)$ artition Entroperation			AGE < 3 true	0		f=1==		$-\frac{1}{4}log_{2}$	$\left(\frac{1}{4}\right) - \frac{3}{4}\log_2\left(\frac{3}{4}\right)$
	ID	Good Behavior	DRUG DEPEN	VDENT	true:2/2 Recidivist		ID	GOOD BEHAVIOR	DRUG DEPENDENT		
D3	1	false	false		true	D4	2	false true	false false	false false	true:1/4 False:3/4
	3	false	false		true		5	true	true	true	
			•	No fu	rther split		6	true	false	false	

The table below illustrates the information gain for features:

• The dataset on the right branch of the tree (D_4) is not homogenous, so we need to grow this branch of the tree. The entropy for this dataset, D_4 , is: *H*(RECIDIVIST, D_4)

$$= -\sum_{l \in \{true, \\ false\}} P(\text{RECIDIVIST} = l) \times \log_2 \left(P(\text{RECIDIVIST} = l) \right)$$
$$= -\left(\left(\frac{1}{4} \times \log_2(\frac{1}{4}) \right) + \frac{3}{4} \times \log_2(\frac{3}{4}) \right) = 0.8113 \text{ bits}$$

Split by Feature	Level	Part.	Instances	Partition Entropy	Rem.	Info. Gain
GOOD Behavior	true false	$\mathcal{D}_7 \ \mathcal{D}_8$	$\begin{array}{c} \textbf{d}_4, \textbf{d}_5, \textbf{d}_6 \\ \textbf{d}_2 \end{array}$	0.918295834 0	0.4591	0.3522 =0.8113-0.4591
Drug Dependent	true false	$\mathcal{D}_9 \ \mathcal{D}_{10}$	\mathbf{d}_5 $\mathbf{d}_2, \mathbf{d}_4, \mathbf{d}_6$	0 0	0	0.8113 =0.8113-0



Example 2

			MARITAL		ANNUAL
ID	AGE	EDUCATION	STATUS	OCCUPATION	INCOME
1	39	bachelors	never married	transport	25 <i>K</i> –50 <i>K</i>
2	50	bachelors	married	professional	25 <i>K</i> –50 <i>K</i>
3	18	high school	never married	agriculture	< 25K
4	28	bachelors	married	professional	25K-50K
5	37	high school	married	agriculture	25 <i>K</i> –50 <i>K</i>
6	24	high school	never married	armed forces	$<\!25K$
7	52	high school	divorced	transport	25 <i>K</i> –50 <i>K</i>
8	40	doctorate	married	professional	>50K

OCCUPATION :

transport = works in the transportation industry;
professional= doctors, lawyers, etc.;
agriculture = works in the agricultural industry;
armed forces = is a member of the armed forces;

Chap4. Exercise 3. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR PREDICTIVE DATA ANALYTICS, 2015

Calculate the entropy:

$H(\text{Annual Income}, \mathcal{D})$

$$= -\sum_{\substack{\substack{<25K,\\25K-50K,\\>50K}}} P(\text{AN. INC.} = l) \times \log_2 \left(P(\text{AN. INC.} = l) \right)$$
$$= -\left(\left(\left(\frac{2}{8} \times \log_2 \left(\frac{2}{8} \right) \right) + \left(\frac{5}{8} \times \log_2 \left(\frac{5}{8} \right) \right) + \left(\frac{1}{8} \times \log_2 \left(\frac{1}{8} \right) \right) \right)$$
$$= 1.2988 \ bits$$

Calculate the Gini index:

 $Gini(ANNUAL INCOME, \mathcal{D})$

$$= 1 - \sum_{\substack{l \in \{25K, \\ 25K-50K, \\ >50K}} P(\text{AN. INC.} = l)^2$$
$$= 1 - \left(\left(\frac{2}{8}\right)^2 + \left(\frac{5}{8}\right)^2 + \left(\frac{1}{8}\right)^2 \right) = 0.5313$$

ID	Age	ANNUAL INCOME	-
3	18	< 25K	_
6	24	$<\!25K$	- 26
4	28	25K-50K	- 20
5	37	25K-50K	
1	39	25K-50K	- 39.5
8	40	>50K	
2	50	25K-50K	- 45
7	52	25K-50K	

First sort the instances according to the AGE feature:

The mid-points in the AGE values that are adjacent in the new ordering but that have different target levels define the possible threshold points: 26, 39.5, and 45.

Split by Feature	Partition	Instances	Partition Entropy	Rem.	Info. Gain
>26	$\mathcal{D}_1 \ \mathcal{D}_2$	${f d}_3, {f d}_6 \ {f d}_1, {f d}_2, {f d}_4, {f d}_5, {f d}_7, {f d}_8$	0 0.6500	0.4875	0.8113
>39.5	$\mathcal{D}_3 \ \mathcal{D}_4$	$\begin{array}{c} \textbf{d}_1, \textbf{d}_3, \textbf{d}_4, \textbf{d}_5, \textbf{d}_6 \\ \textbf{d}_2, \textbf{d}_7, \textbf{d}_8 \end{array}$	0.9710 0.9033	0.9456	0.3532
>45	$\mathcal{D}_5 \mathcal{D}_6$	$\begin{array}{c} \textbf{d}_{1}, \textbf{d}_{3}, \textbf{d}_{4}, \textbf{d}_{5}, \textbf{d}_{6}, \textbf{d}_{8} \\ \textbf{d}_{2}, \textbf{d}_{7} \end{array}$	1.4591 0	1.0944	0.2044

Split by Feature	Level	Instances	Partition Entropy	Rem.	Info. Gain	
EDUCATION	high school bachelors doctorate	$ d_3, d_5, d_6, d_7 d_1, d_2, d_3 d_8 $	1.0 0 0	0.5	0.7988	
MARITAL STATUS	never married married divorced	${f d_1, d_3, d_6} \ {f d_2, d_4, d_5, d_8} \ {f d_7}$	0.9183 0.8113 0	0.75	0.5488	
OCCUPATION	transport professional agriculture armed forces	d_1, d_7 d_2, d_4, d_8 d_3, d_5 d_6	0 0.9183 1.0 0	0.5944	0.7044	

Chap4. Exercise 3. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, FUNDAMENTALS OF MACHINE LEARNING FOR PREDICTIVE DATA ANALYTICS, 2015

Homework 1

Finish the tree splitting of Example 2.

Homework 2

Consider the following n = 16 points in two dimensions, training a binary tree using the entropy impurity.

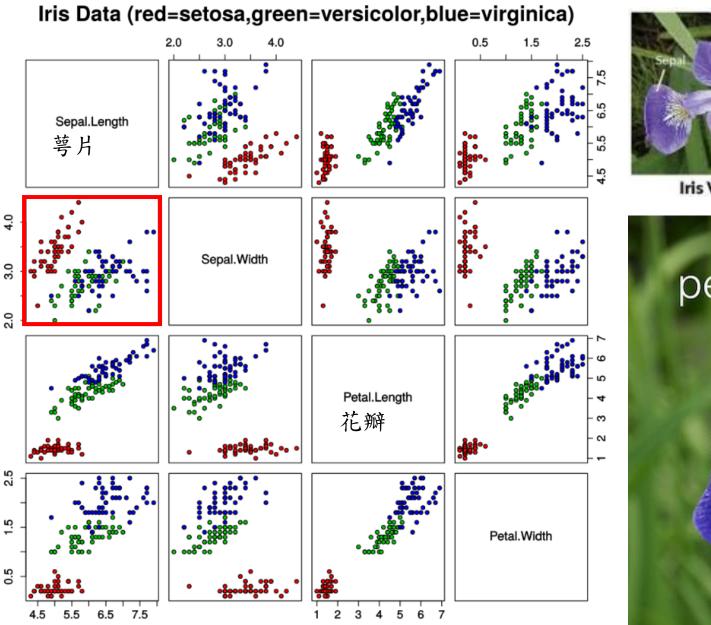
- 1. Plot the points of ω_1 and points of ω_2 in the 2D x_1 - x_2 plane.
- 2. Provide the step-by-step split feature Table similar to Example 1.
- 3. Illustrate the recursive binary splitting on the 2D x_1 - x_2 plane.

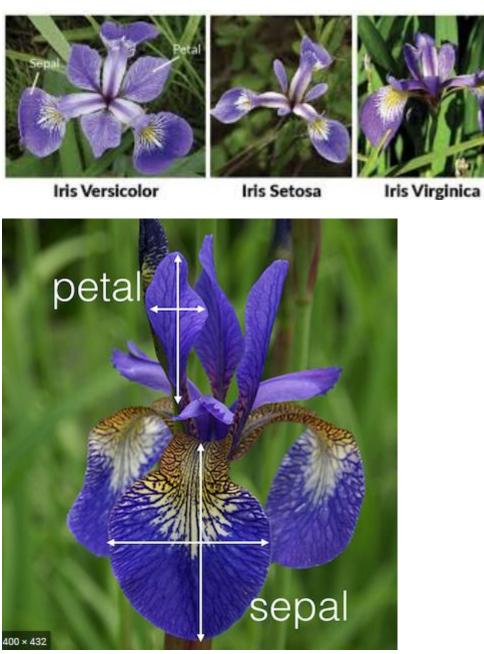
ω_1 (black)	ω_2 (red)
$x_1 x_2$	$x_1 x_2$
.15 .83	.10 .29
.09 .55	.08 .15
.29 .35	.23 .16
.38 .70	.70 .19
.52 .48	.62 .47
.57 .73	.91 .27
.73 .75	.65 .90
.47 .06	.75 .36

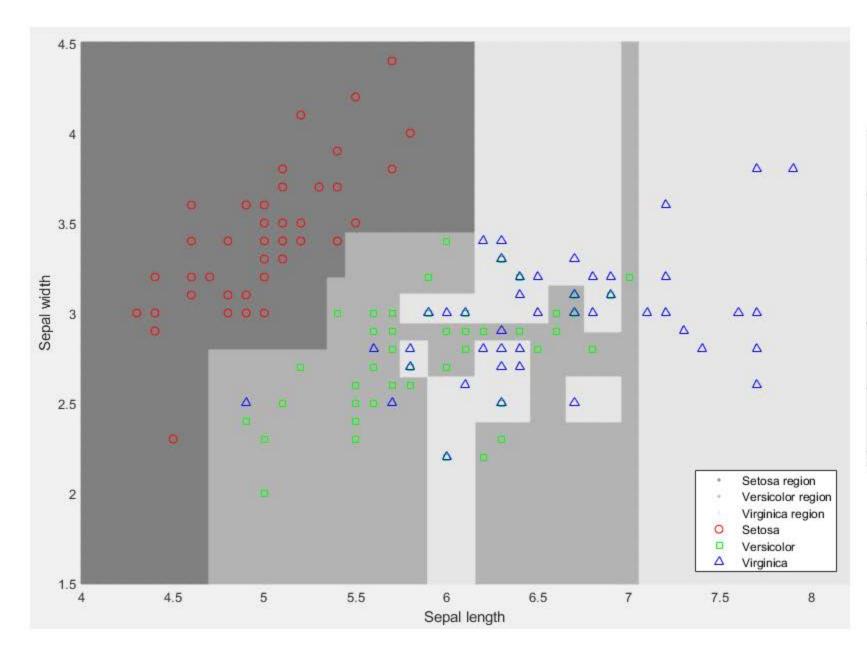
安德森鳶尾花卉數據集

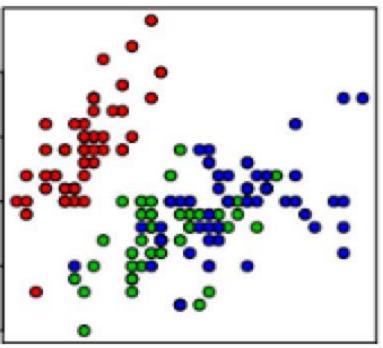
- 安德森鳶尾花卉數據集(Anderson's Iris data set),也稱鳶尾花卉 數據集(Iris flower data set)或費雪鳶尾花卉數據集(Fisher's Iris data set),是一類多重變量分析的數據集。
- 它最初是<u>埃德加·安德森(Edgar Anderson</u>)從加拿大<u>加斯帕半島</u>
 上的<u>鳶尾屬</u>花朵中提取的<u>形態學</u>變異數據,後由<u>羅納德·費雪</u>作為 <u>判別分析</u>的一個例子,運用到統計學中。
- 其數據集包含了150個樣本,都屬於<u>鳶尾屬</u>下的三個亞屬,分別是 山鳶尾、變色鳶尾和<u>維吉尼亞鳶尾(Virginia Iris</u>)。
- 四個特徵被用作樣本的定量分析,它們分別是<u>花萼和花瓣</u>的長度和 寬度。

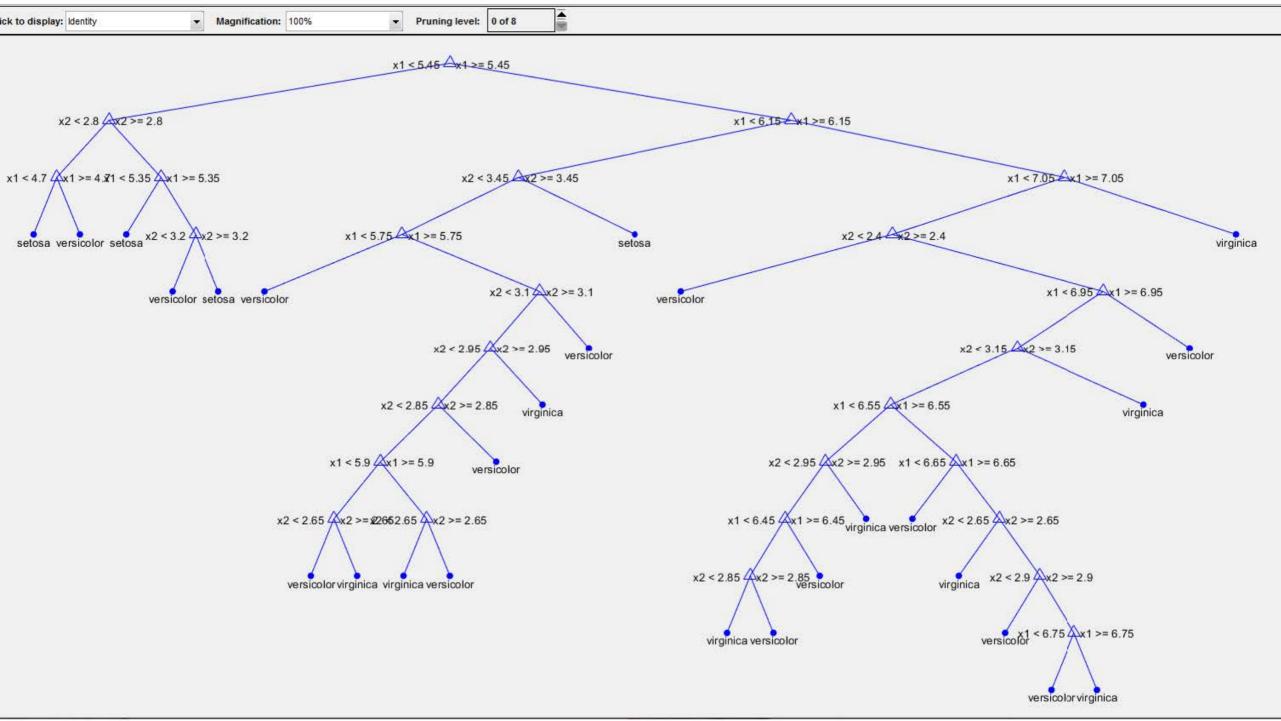
https://zh.wikipedia.org/wiki/%E5%AE%89%E5%BE%B7%E6%A3%AE%E9%B8%A2%E5%B0%BE%E8%8A%B1%E5%8 D%89%E6%95%B0%E6%8D%AE%E9%9B%86











% Fishertree.m from A Concise Introduction to Machine Learning, 2020 Anita C. Faul load fisheriris

```
% Extract two attributes.
```

```
sl = meas(:,1); % sepal length
sw = meas(:,2); % sepal width
X = [sl,sw];
```

```
% Create classifier.
```

```
% The depth of a decision tree is governed by three arguments:
% Maximum number of branch node splits; a large value results in a deep tree.
MaxNumSplits = size(X,1) - 1;
```

% Minimum number of samples per branch node; a small number results in a deep tree. MinParentSize = 5;

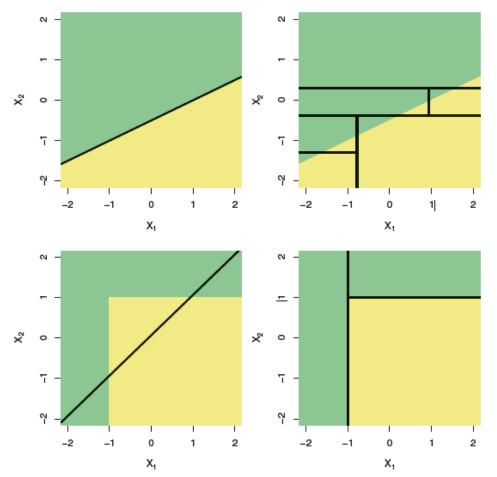
```
% Minimum number of samples per leaf; a small number results in a deep tree.
MinLeafSize = 1;
```

```
treeModel = fitctree(X, species, ...
    'MaxNumSplits', MaxNumSplits, ...
    'MinLeafSize', MinLeafSize, ...
    'MinParentSize', MinParentSize);
view(treeModel, 'mode', 'graph') % visualization
```

```
% Lay grid over the region
d = 0.01;
[x1Grid,x2Grid] = meshgrid(4:d:8.2,1.5:d:4.5);
xGrid = [x1Grid(:),x2Grid(:)]; N = size(xGrid,1);
% For each grid point calculate the score of each class.
% 'predict' returns the predicted class labels corresponding to the
% minimum misclassification cost, the score (posterior probability)
% for each class as well as the predicted node number and class number.
```

```
[~,score,~,~] = predict(treeModel,xGrid);
% Classify according to the maximum score.
[~,maxScore] = max(score,[],2);
```

Tree Versus Linear Models



Top Row: A 2D classification example in which the true decision boundary is linear, and is indicated by the shaded regions. A classical approach that assumes a linear boundary (left) will outperform a decision tree that performs splits parallel to the axes (right).

Bottom Row: Here the true decision boundary is non-linear. Here a linear model is unable to capture the true decision boundary (left), whereas a decision tree is successful (right).

Advantages and Disadvantages of Trees

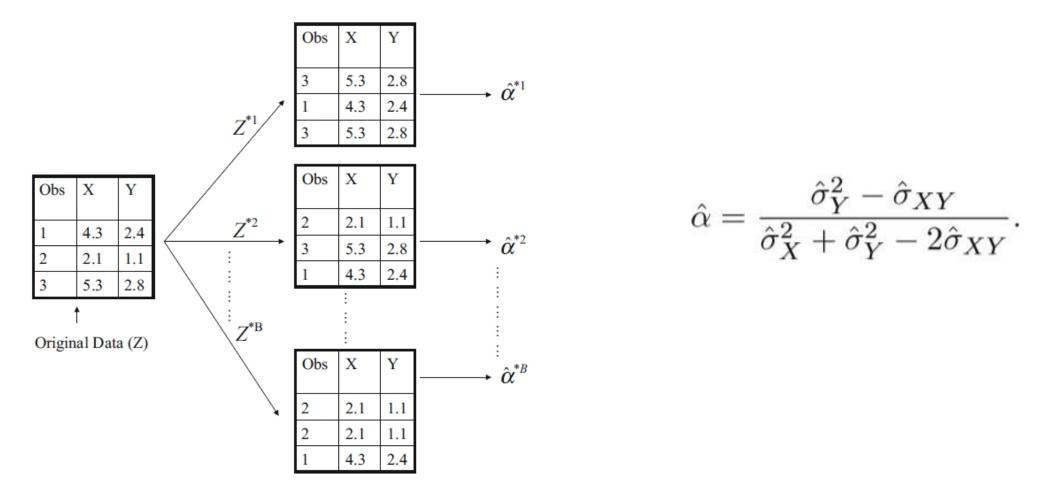
- ▲ Easy to explain to people !
- ▲ More closely mirror human decision making.
- ▲ Can be displayed graphically and easily interpreted even by a non-expert.
- ▲ Can easily handle qualitative predictors without creating dummy variables.
- ▼ Generally do not have the same level of predictive accuracy as some of the other classification approaches.

By aggregating many decision trees, the predictive performance of trees can be substantially improved.

Bagging

- The bootstrap is an extremely powerful idea. It is used in many situations in which it is hard or even impossible to directly compute the standard deviation of a quantity of interest.
- *Bootstrap aggregation*, or *bagging*, is a general-purpose procedure for reducing the variance of a statistical learning method.

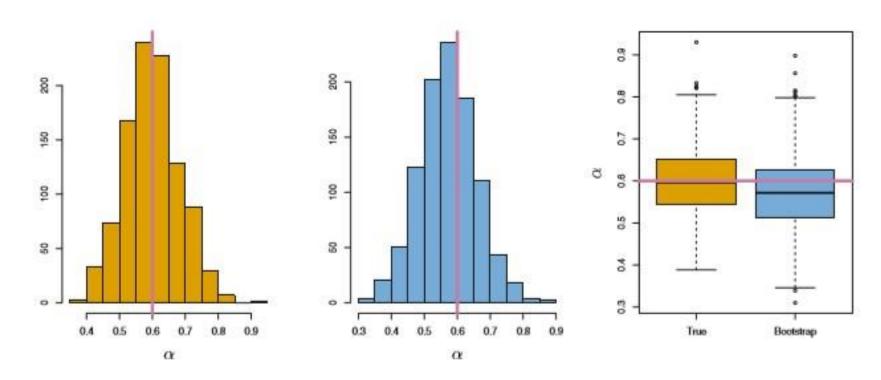
Example with just 3 observations



A graphical illustration of the bootstrap approach on a small sample containing

n = 3 observations. Each bootstrap data set contains n observations, sampled with replacement from the original data set. Each bootstrap data set is used to obtain an estimate of α

Results



Left: A histogram of the estimates of α obtained by generating 1,000 simulated data sets from the true population. Center: A histogram of the estimates of α obtained from 1,000 bootstrap samples from a single data set. Right: The estimates of α displayed in the left and center panels are shown as boxplots. In each panel, the pink line indicates the true value of α .

Bagging classification trees

- Bootstrap by taking repeated samples from the training data set.
- First generate *b* different bootstrapped training data sets.
- Then train the *j*th bootstrapped training set to get the predictions x at $\varphi_j(x)$.
- We then average all the predictions to obtain

$$f \leftarrow \frac{1}{b} \sum_{j=1}^{b} \varphi_j(\boldsymbol{x})$$

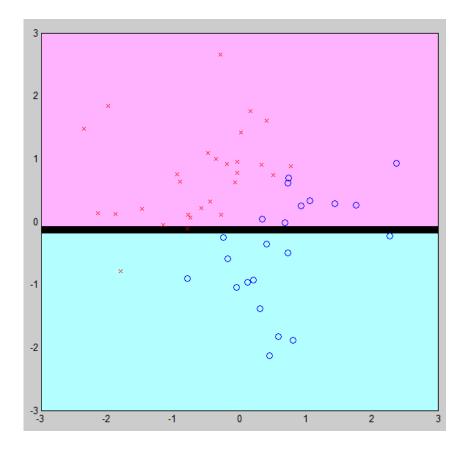
This is called *bagging*.

• For each test observation, we record the class predicted by each of the *j* trees, and take a *majority vote*: the overall prediction is the most commonly occurring class among the B predictions.

MATLAB code for decision stump classification

% A decision stump is a depth-one version of a decision tree.

```
% tree stump.m
x = randn(50, 2);
y=2*(x(:,1)>x(:,2))-1;
X0 = linspace(-3, 3, 50);
[X(:,:,1) X(:,:,2)]=meshgrid(X0);
d=ceil(2*rand);
[xs,xi]=sort(x(:,d));
el=cumsum(y(xi));
eu=cumsum(y(xi(end:-1:1)));
e=eu(end-1:-1:1)-el(1:end-1);
[em,ei]=max(abs(e));
c=mean(xs(ei:ei+1));
s=sign(e(ei));
Y = sign(s^{*}(X(:,:,d)-c));
figure(1); clf; hold on; axis([-3 3 -3 3]);
colormap([1 0.7 1; 0.7 1 1]); contourf(X0,X0,Y);
plot(x(y==1,1), x(y==1,2), 'bo');
plot (x(y==-1,1), x(y==-1,2), 'rx');
```

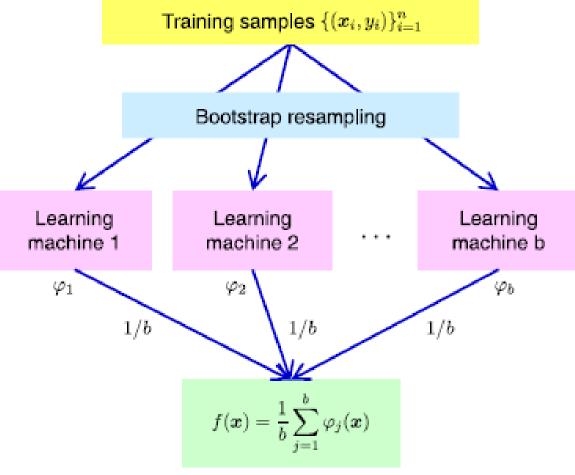


Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016

Bagging for decision stumps

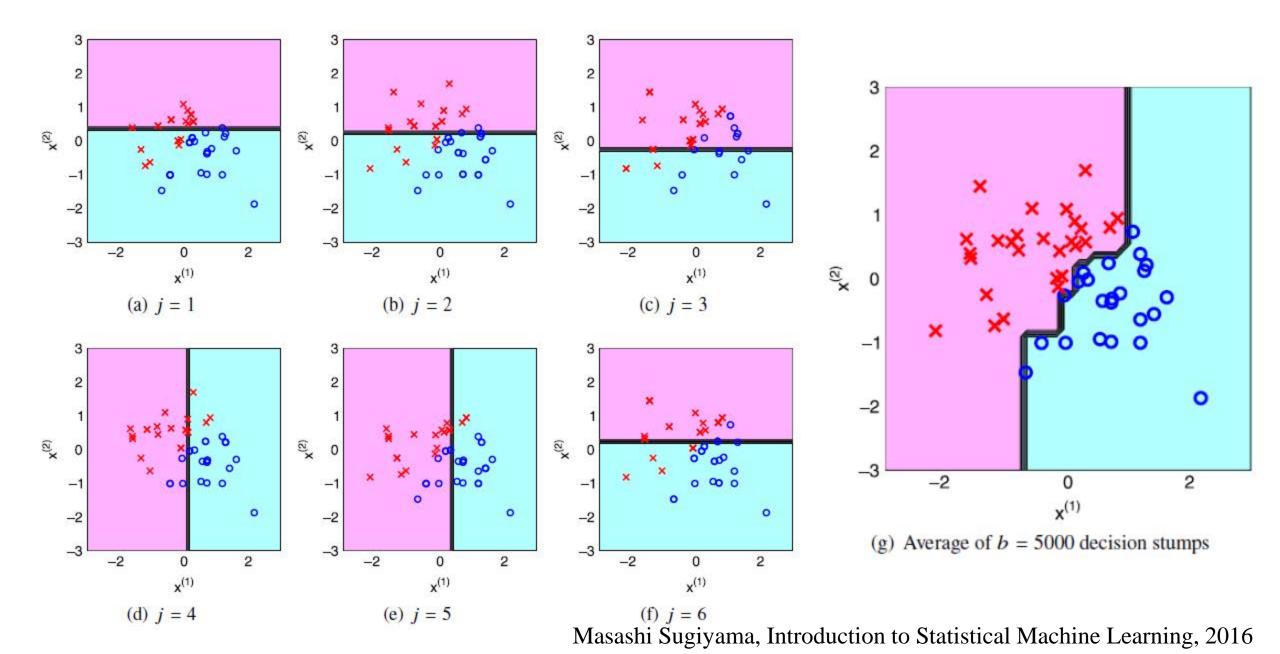
- 1. For $j = 1, \dots, b$
- (a) Randomly choose *n* samples from $\{(x_i, y_i)\}_{i=1}^n$ with replacement.
- (b) Train a classifier φ_j with the randomly resampled data set.
- 2. Output the average of $\{\varphi_j\}_{j=1}^b$ as the final solution f :

$$f \leftarrow \frac{1}{b} \sum_{j=1}^{b} \varphi_j(\mathbf{x})$$



Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016

Example of bagging for decision stumps



```
% bagging for decision stumps
% bagging.m
n=50; x=randn(n,2);
y=2*(x(:,1)>x(:,2))-1;
b=5000; a=50; Y=zeros(a,a);
X0=linspace(-3,3,a);
[X(:,:,1) X(:,:,2)]=meshgrid(X0);
for j=1:b
  db=ceil(2*rand);
  r=ceil(n*rand(n,1));
  xb=x(r,:); yb=y(r);
  [xs,xi]=sort(xb(:,db));
  el=cumsum(yb(xi));
  eu=cumsum(yb(xi(end:-1:1)));
  e=eu(end-1:-1:1)-el(1:end-1);
  [em,ei]=max(abs(e)); c=mean(xs(ei:ei+1));
  s=sign(e(ei));
  Y=Y+sign(s*(X(:,:,db)-c))/b;
end
figure(1); clf; hold on; axis([-3 3 -3 3]);
colormap([1 0.7 1; 0.7 1 1]); contourf(X0,X0,sign(Y));
plot(x(y==1,1), x(y==1,2), 'bo');
plot (x(y==-1,1), x(y==-1,2), 'rx');
```

Masashi Sugiyama, Introduction to Statistical Machine Learning, 2016

Random Forests

- *Random forests* provide an improvement over bagged trees by way of a random small tweak that *decorrelates* the trees. This reduces the variance when we average the trees.
- As is bagging, we build a number of decision trees on bootstrapped training samples.
- Each time a split in a tree, *a random selection of m predictors* is chosen as split candidates from the full set of *p* predictors. The split is allowed to use only one of those *m* predictors.
- A fresh selection of *m* predictors is taken at each split, and typically we choose $m \approx \sqrt{p}$ —that is, the number of predictors considered at each split is approximately equal to the square root of the total number of predictors. For regression purpose, use $m \approx \frac{p}{3}$.

Out-of-Bag Error Estimation

- There is a very straightforward way to estimate the test error of a bagged model.
- The key to bagging is that trees are repeatedly fit to bootstrapped subsets of the observations. On average each bagged tree makes use of around two-thirds of the observations.
- The remaining one-third of the observations not used to fit a given bagged tree are referred to as the *out-of-bag* (OOB) observations.
- We can predict the response for the *i*th observation using each of the trees in which that observation was OOB. This will yield around b/3 predictions for the *i*th observation, which we average.

Example of Random Forest

The table lists the details of five participants in a heart disease study, and a target feature RISK which describes their risk of heart disease.

Each patient is described in terms of four binary descriptive features

- EXERCISE, how regularly do they exercise
- SMOKER, do they smoke
- OBESE, are they overweight
- FAMILY, did any of their parents or siblings suffer from heart disease

ID	EXERCISE	SMOKER	OBESE	FAMILY	Risk
1 daily		false	false	yes	low
		true	false	yes	high
3	daily	false	false	no	low
4	rarely	true	true	yes	high
5	rarely	true	true	no	high

Step 1. Generate bootstrap samples and random selection of m=2 features

-												
	ID	EXERCISE	FAMILY	Risk	ID	SMOKER	OBESE	Risk	ID	OBESE	FAMILY	Risk
•	1	daily	yes	low	1	false	false	low	1	false	yes	low
	2	weekly	yes	high	2	true	false	high	1	false	yes	low
	2	weekly	yes	high	2	true	false	high	2	false	yes	high
	5	rarely	no	high	4	true	true	high	4	true	yes	high
	5	rarely	no	high	5	true	true	high	5	true	no	high
		Bootstrap	Sample A			Bootstrap	Sample I	3		Bootstra	ap Sample	С
Th	e ent	ropy calculatio	n for Samp	le A:	The e	entropy calcu	lation for S	ample B:	The	entropy cal	culation for	Sample C:
=		$\sum_{\substack{\{low, l \\ high\}}} P(\text{RISK} = l)$	$P(\mathbf{R}) \times \log_2(P(\mathbf{R}))$		= -	SK, BoostrapSam $\sum_{\substack{e \{low, \\ high\}}} P(\text{RISK})$ $\left(\left(\frac{1}{-} \times \log_2 \left(\frac{1}{-} \right) \right) \right) = 0$	$= l) \times log_2(l)$		= -	$l \in \left\{ \begin{matrix} low, \\ high \end{matrix} \right\}$	$ISK = l) \times log$	$g_2(P(\text{RISK} = l))$ $\times \log_2\left(\frac{3}{5}\right))$
		$\left(\frac{5}{5} \times \log_2\left(\frac{5}{5}\right)\right)$ 9 bits	$+\left(\frac{1}{5}\times \log\right)$	$2\left(\overline{5}\right)$		$((5^{1082})(5^{1082}))$)) ' (5 ^	(5)))		$-\left(\left(\frac{-5}{5}\times \log_2\right)\right)$.9710 bits	$\left(\frac{1}{5}\right)^+\left(\frac{1}{5}\right)$	$\times \log_2\left(\overline{5}\right)))$

Step 2. Grow a tree from each bootstrap sample

Split by Feature	Level	Instances	Partition Entropy	Rem.	Info. Gain
Exercise	daily weekly rarely	$d_1 \\ d_2, d_2 \\ d_5, d_5,$	0 0 0	0	0.7219
FAMILY	yes no	$\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_2$ $\mathbf{d}_5, \mathbf{d}_5$	0.9183 0	0.5510	0.1709
Split by Feature	Level	Instances	Partition Entropy	Rem.	Info. Gain
SMOKER	true false	$\substack{\textbf{d}_2, \textbf{d}_2, \textbf{d}_4, \textbf{d}_5\\ \textbf{d}_1}$	0	0	0.7219
OBESE	true false	$\begin{matrix} \mathbf{d}_4, \mathbf{d}_5 \\ \mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_2 \end{matrix}$	0 0.9183	0.5510	0. <mark>1709</mark>
Split by Feature	Level	Instances	Partition Entropy		. Ga
OBESE	true false	$\begin{array}{c} \mathbf{d}_4, \mathbf{d}_5 \\ \mathbf{d}_1, \mathbf{d}_1, \mathbf{d}_2 \end{array}$	0 0.9183	0.551	0 0.42
FAMILY	yes no	$\mathbf{d}_1, \mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_4$ \mathbf{d}_5	1.0 0	0.8	0.17

Step 3. Compute Out-of-Bag Error

- The observations not used to fit a given bagged tree are the *out-of-bag* (OOB) observations.
- ID=3, EXERCISE= daily, SMOKER=false, OBESE= false, FAMILY= no

Each of the trees in the ensemble will vote as follows:

- Tree 1: EXERCISE= daily \rightarrow RISK=low
- Tree 2: SMOKER=false→ RISK=low
- Tree 3: OBESE= false \rightarrow RISK=low

So, the majority vote is for RISK=low, same with the target RISK=low

Step 4. Make prediction

Assuming the random forest model you have created uses majority voting, what prediction will it return for the following query:

EXERCISE=rarely, SMOKER=false, OBESE=true, FAMILY=yes

Each of the trees in the ensemble will vote as follows:

- Tree 1: EXERCISE=rarely→ RISK=high
- Tree 2: SMOKER=false→ RISK=low
- Tree 3: OBESE=true → RISK=high

So, the majority vote is for RISK=high

Algorithm 8.4 The random forests algorithm.

- 1. Given a training set (x_i, z_i) , i = 1, ..., n, of patterns x_i and labels z_i . Specify the number of trees in the forest, B, and the number of random features to select, m.
- 2. For b = 1, ..., B,
 - (a) Generate a bootstrap sample of size *n* by sampling with replacement from the training set; some patterns will be replicated, others will be omitted.
 - (b) Design a decision tree classifier, $\eta_b(x)$ using the bootstrap sample as training data, randomly selecting at each node in the tree *m* variables to consider for splitting.
 - (c) Classify the nonbootstrap patterns (the 'out-of-bag' data) using the classifier $\eta_b(x)$.
- 3. Assign x_i to the class most represented by the classifiers $\eta_{b'}(x)$, where b' refers to the bootstrap samples that do not contain x_i .

Summary

- Decision trees are simple and interpretable models for regression and classification.
- However they are often not competitive with other methods in terms of prediction accuracy.
- Bagging and random forests are good methods for improving the prediction accuracy of trees. They work by growing many trees on the training data and then combining the prediction of the resulting ensemble of trees.
- Random forests is one of the state-of-the-art methods for supervised learning. However results can be difficult to interpret.

Additional Tutorial (StatQuest)

Decision tree: https://www.youtube.com/watch?v=J4Wdy0Wc_xQ

Random forest:

Part Ihttps://www.youtube.com/watch?v=J4Wdy0Wc_xQ&t=123sPart IIhttps://www.youtube.com/watch?v=sQ870aTKqiM

AdaBoost:

https://www.youtube.com/watch?v=LsK-xG1cLYA

Gradient Boost

Part I <u>https://www.youtube.com/watch?v=3CC4N4z3GJc&t=50s</u> Part II <u>https://www.youtube.com/watch?v=2xudPOBz-vs</u> Part III https://www.youtube.com/watch?v=jxuNLH5dXCs

Algorithm 8.2 The Adaboost algorithm.

- 1. Initialise the weights $w_i = 1/n, i = 1, ..., n$.
- 2. For t = 1, ..., T, (*T* is the number of boosting rounds)
 - (a) Construct a classifier $\eta_t(x)$ from the training data with weights w_i , i = 1, ..., n.
 - (b) Calculate e_t as the sum of the weights w_i corresponding to misclassified patterns.
 - (c) If $e_t > 0.5$ or $e_t = 0$ then terminate the procedure, otherwise set $w_i = w_i(1 e_t)/e_t$ for the misclassified patterns and renormalise the weights so that they sum to unity.
- 3. For a two-class classifier, in which $\eta_t(x) = 1$ implies $x \in \omega_1$ and $\eta_t(x) = -1$ implies $x \in \omega_2$, form a weighted sum of the classifiers, η_t ,

$$\hat{\eta} = \sum_{t=1}^{T} \log\left(\frac{1-e_t}{e_t}\right) \eta_t(x)$$

and assign *x* to ω_1 if $\hat{\eta} > 0$.