Support Vector Machine

生醫光電所 吳育德

Credit:

Chap2, Support Vector Machines for Pattern Classification, Shigeo Abe, 2005

Chap5. A First Course in Machine Learning, 2ed, Simon Rogers and Mark Girolami, 2017

Hard-Margin Support Vector Machines

• Let N d-dimensional training inputs x_i (i = 1, ..., N) belong to Class 1 or 2 and the labels be $y_i = 1$ for Class 1 and -1 for Class 2.

• If data are linearly separable, we can determine the decision function: $D(x) = \mathbf{w}^T x + b$

where w is an d-dimensional vector, b is a bias term, i = 1, ..., N

$$\mathbf{w}^{T} \mathbf{x}_{i} + b \begin{cases} > 0 & \text{for } y_{i} = 1, \\ < 0 & \text{for } y_{i} = -1 \end{cases}$$

• Because the training data are linearly separable, no training data satisfy $\mathbf{w}^T \mathbf{x} + b = 0$

• To control separability, instead of ①, we consider

$$\mathbf{w}^{T} \mathbf{x}_{i} + b \begin{cases} > 1 & \text{for } y_{i} = 1, \\ < -1 & \text{for } y_{i} = -1 \end{cases}$$

Here, 1 and -1 can be replaced by a constant a > 0 and -a.

• ② is equivalent to

$$y_i(\mathbf{w}^T x_i + b) \ge 1, i = 1, ..., N$$

- The hyperplane $D(x) = \mathbf{w}^T x + b = c$ for -1 < c < 1 forms a separating hyperplane that separates x_i (i = 1, ..., N).
- When c = 0, the separating hyperplane is in the middle of the two hyperplanes with c = 1 and -1.

• The distance between the separating hyperplane and the training datum nearest to the hyperplane is called the *margin*

• The hyperplane with the maximum margin is called the **optimal** separating hyperplane

• The margin is a function of w. Training the SVM consists of learning a w that maximizes the margin. So, margin is important.

Optimal separating hyperplane in a two-dimensional space

Normal distance between x and the hyperplane

- x_{proj} : projection of x onto the hyperplane D(x) = 0.
- d: the normal distance between x and x_{proj} .

•
$$x = x_{proj} + d \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$D(x) = \mathbf{w}^{T} \mathbf{x} + b$$

$$= \mathbf{w}^{T} (x_{proj} + d \frac{\mathbf{w}}{||\mathbf{w}||}) + b$$

$$= \mathbf{w}^{T} x_{proj} + b + d \frac{\mathbf{w}^{T} \mathbf{w}}{||\mathbf{w}||} = 0 + d||\mathbf{w}||$$

$$\Rightarrow d = \frac{D(x)}{||\mathbf{w}||}$$

Cost function for obtaining the optimal separating hyperplane

•
$$d_+ = \left| \frac{D(x_+)}{||\mathbf{w}||} \right| = \frac{+1}{||\mathbf{w}||}$$
 , $d_- = \left| \frac{D(x_-)}{||\mathbf{w}||} \right| = \left| \frac{-1}{||\mathbf{w}||} \right| = \frac{1}{||\mathbf{w}||}$

• Margin =
$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

• The optimal separating hyperplane can be obtained by minimizing

$$Q(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2$$

with respect to w and b subject to the constraints

$$y_i(\mathbf{w}^T x_i + b) \ge 1, i = 1, ..., N$$

(4)

- Find $\mathbf{x} = [x_1, \dots, x_n]^T$ that

 Minimize $F(\mathbf{x})$ ①

 subject to $g_i(\mathbf{x}) \leq 0, i = 1, \dots, m$ ②
- If x satisfies the inequality constraints 2, it is said to be *feasible*. Otherwise it is called *infeasible*
- The *i*th constraint $g_i(x) \le 0$ is said to be active at a point x if $g_i(x) = 0$.
- The constraints ② can be converted to equality constraints by adding positive slack variables to get:

Minimize F(x) ①

subject to $g_i(x) + y_i^2 = 0, i = 1, \dots, m$ 3

- 1 3 is an optimization problem with only m equality constraints
- Let $\mathbf{y} = [y_1, \dots, y_m]^T$, $\lambda = [\lambda_1, \dots, \lambda_m]^T$, the Lagrangian has the form:

$$L(\mathbf{x}, \mathbf{y}, \lambda) = F(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i (g_i(\mathbf{x}) + y_i^2),$$

which has n+2m unknown x^* , y^* and λ^*

• The optimal conditions are

$$\frac{\partial L}{\partial x} = 0 \implies \frac{\partial F(x)}{\partial x} + \sum_{i=1}^{m} \lambda_i \frac{\partial g_i(x)}{\partial x} = 0,$$

$$\frac{\partial L}{\partial y_i} = 0 \implies 2\lambda_i y_i = 0,$$

$$\frac{\partial L}{\partial \lambda_i} = 0 \implies g_i(x) + y_i^2 = 0,$$

$$i = 1, \dots, m$$

$$\vdots$$

$$i = 1, \dots, m$$

$$\vdots$$

• 456 are usually called the Karush–Kuhn–Tucker (KKT) conditions

- $4 \Rightarrow \frac{\partial F(x)}{\partial x}$ is a linear combination of $\frac{\partial g_i(x)}{\partial x}$ with $\lambda_i \neq 0$
- $\lambda_i y_i = 0$ (5) \Rightarrow either $\lambda_i = 0 \Rightarrow y_i \neq 0$ and $g_i(x) + y_i^2 = 0 \Rightarrow g_i(x) < 0$ (inactive) or $\lambda_i \neq 0 \Rightarrow y_i = 0$ and $g_i(x) + y_i^2 = 0 \Rightarrow g_i(x) = 0$ (active). $\Rightarrow \lambda_i g_i(x) = 0$ (we will show $\lambda_i > 0$ when $g_i(x) = 0$)
- Combining 4 & 5, one concludes that at the optimal solution, $\frac{\partial F(x)}{\partial x}$ is a linear combination of the gradients of active constraints.

An illustration of the optimality conditions for inequality constraints; the feasible region is defined by 3 constraints and at the optimal point, $g_1(\mathbf{x})$ and $g_2(\mathbf{x})$ are active. At this point, $\nabla F(\mathbf{x})$ is a linear function of the gradients of the active constraints $\nabla g_1(\mathbf{x})$, $\nabla g_2(\mathbf{x})$

• The necessary KKT condition for inequality constraints can thus be cast in the standard form

$$\frac{\partial F(\mathbf{x})}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j(\mathbf{x})}{\partial x_i} = 0, \qquad i = 1, \dots, n$$

$$\lambda_j g_j(\mathbf{x}) = 0, \quad complementarity \ condition \quad j = 1, \dots, m$$

$$g_j(\mathbf{x}) \leq 0, \qquad \qquad j = 1, \dots, m$$

$$\lambda_i \geq 0, \qquad \qquad j = 1, \dots, m$$

$$0$$

$$j = 1, \dots, m$$

$$0$$

• Condition $\lambda_j \geq 0$ (10) for the inequality constraints $g_j(x) \leq 0$ ensures F will not be reduced by a move off any of the active constraints at x^* to the interior of the feasible region.

Convert constrained into unconstrained optimization

• The square of the Euclidean norm w in 3 is to make the optimization problem quadratic programming.

• The assumption of linear separability means that there exist \mathbf{w} and \mathbf{b} that satisfy $\mathbf{\hat{4}}$. We call the solutions that satisfy $\mathbf{\hat{4}}$ feasible solutions.

• We first convert the constrained problem given by 3 and 4 into the unconstrained problem

$$Q(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + \sum_{i=1}^{N} \alpha_{i} \{1 - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)\}$$
 5

where $\alpha = (\alpha_1, \ldots, \alpha_N)^T$ and α_i are the nonnegative Lagrange multipliers.

Karush-Kuhn-Tucker (KKT) conditions

• The optimal solution of 5 is given by minimizing w.r.t \mathbf{w} and \mathbf{b} and maximizing w.r.t α_i (≥ 0) satisfying the following KKT conditions

$$\frac{\partial Q(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i x_i = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i x_i \quad (*)$$

$$\frac{\partial Q(\mathbf{w}, b, \boldsymbol{\alpha})}{\partial b} = -\sum_{i=1}^{N} \alpha_i \, y_i = 0 \tag{**}$$

$$\alpha_i \{1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)\} = 0, i = 1, ..., N$$

$$\alpha_i \geq 0$$
, $i = 1, \ldots, N$

- 6 are called KKT complementarity conditions: $\alpha_i = 0$, or $\alpha_i > 0$ and $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$ must be satisfied.
- The training data x_i with $\alpha_i > 0$ are called support vectors

• Substituting (*) and (**) into ⑤, we obtain the dual problem. Maximize

$$Q(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + \sum_{i=1}^{N} \alpha_{i} \{1 - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)\}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \sum_{j=1}^{N} \alpha_{j} y_{j} \mathbf{x}_{j} + \sum_{i=1}^{N} \alpha_{i} \{1 - y_{i} (\sum_{j=1}^{N} \alpha_{j} y_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{i} + b)\}$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} - b \sum_{i=1}^{N} \alpha_{i} y_{i}$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} - b \times 0$$

w.r.t. α_i subject to

$$\sum_{i=1}^{N} \alpha_i y_i = 0, \quad \alpha_i \ge 0, \quad i = 1, ..., N$$

• This is the *dual problem* and it is in terms of α_i 's only $\Rightarrow \alpha_i$'s are used to get optimal **w** and *b*

- This is a *convex optimization problem*. It is possible to obtain α vector corresponding to the *global optimum*. $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$.
- Many of the α_i are 0. Support Vectors (SVs) are the x_i 's corresponding to the nonzero α_i 's. Let $S = \{x_i | \alpha_i > 0\}$ be the set of SVs.
- a. By complementary slackness condition,

$$x_i \in S \Rightarrow \alpha_i > 0 \Rightarrow y_i(\mathbf{w}^T x_i + b) = 1 \Rightarrow x_i$$
 is the closest to the decision boundary.

- b. Optimal $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \ \mathbf{x}_i = \sum_{\mathbf{x}_i \in S} \alpha_i y_i \mathbf{x}_i$ is a linear combination of SVs.
- c. $y_i \times y_i(\mathbf{w}^T \mathbf{x}_i + b) = y_i \Rightarrow b = y_i \mathbf{w}^T \mathbf{x}_i$ where i is such that $\alpha_i > 0$.
- d. It is better to average the SVs : $b = \frac{1}{\#(x_i \in S)} \sum_{x_i \in S} (y_i \mathbf{w}^T \mathbf{x}_i)$

Making Prediction

• Data associated with α_i 's > 0 are support vectors for Classes 1 and 2.

• $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$ (*), the decision function is (do not need to use \mathbf{w} and b explicitly, use $\alpha_i > 0$, y_i and \mathbf{x}_i only)

$$D(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{x_i \in S} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + (y_i - \sum_{x_i \in S} \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_i)$$

• Then unknown datum x is classified into:

$$\begin{cases} \text{Class 1, if } D(\mathbf{x}) > 0 \\ \text{Class 2, if } D(\mathbf{x}) < 0 \end{cases}$$

If D(x) = 0, x is on the boundary and thus is unclassifiable

Example

• Consider a linearly separable case shown in Fig. 2.2, $(x_1, y_1) = (-1,1)$, $(x_2, y_2) = (0,-1)$, $(x_3, y_3) = (1,-1)$, The inequality constraints given by $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$, $i = 1, \ldots, 3$ are

$$-w + b \ge 1$$
, $-b \ge 1$, $-(w + b) \ge 1$ (***)

• The region of (w, b) that satisfies (***) are given by the shaded region in Fig. 2.3. Thus the solution that minimizes $||w||^2$ is given by

$$b = -1, w = -2.$$

- The decision function is D(x) = -2x 1
- The class boundary is x = -1/2
- x = 0 and -1 are support vectors

Fig. 2.2. Linearly separable one-dimensional case

Fig. 2.3. Region that satisfies constraints

• The dual problem is to maximize

$$\begin{split} \mathcal{Q}(\alpha) &= \sum_{i=1}^{3} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_{i} \alpha_{j} \, y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}, \, (x_{1}, y_{1}) = (-1, 1), (x_{2}, y_{2}) = (0, -1), (x_{3}, y_{3}) = (1, -1) \\ &= \alpha_{1} + \alpha_{2} + \alpha_{3} - \frac{1}{2} \{ \alpha_{1}^{2} 1^{2} (-1)^{2} + \alpha_{1} \alpha_{2} (-1) 0 + \alpha_{1} \alpha_{3} (-1) (-1) + \alpha_{2} \alpha_{1} (-1) 0 + \alpha_{2}^{2} (-1)^{2} (0)^{2} + \alpha_{2} \alpha_{3} (-1) (-1) 0 + \alpha_{3} \alpha_{1} (-1) (-1) + \alpha_{3} \alpha_{2} (-1)^{2} 0 + \alpha_{3}^{2} (-1)^{2} 1 \} \\ &= \alpha_{1} + \alpha_{2} + \alpha_{3} - \frac{1}{2} (\alpha_{1} + \alpha_{3})^{2} \quad (****) \end{split}$$

subject to

$$\sum_{i=1}^{3} \alpha_i y_i = \alpha_1 - \alpha_2 - \alpha_3 = 0, \, \alpha_i \ge 0, \, i = 1, \dots, 3$$

• Substituting $\alpha_2 = \alpha_1 - \alpha_3$ into (****), we obtain

$$Q(\alpha) = 2\alpha_1 - \frac{1}{2}(\alpha_1 + \alpha_3)^2$$
 subject to $\alpha_i \ge 0, i = 1, ..., 3$ which is maximized when $\alpha_3 = 0$, since $\alpha_3 \ge 0$

- Now $Q(\alpha) = 2\alpha_1 \frac{1}{2}\alpha_1^2 = -\frac{1}{2}(\alpha_1 2)^2 + 2$, $\alpha_1 \ge 0$ which is maximized for $\alpha_1 = 2$.
- The optimal solution for (****) is $\alpha_1 = 2$, $\alpha_3 = 0$, $\alpha_2 = \alpha_1 \alpha_3 = 2$
- Therefore x = -1 ($\alpha_1 = 2 > 0$) and 0 ($\alpha_2 = 2 > 0$) are support vectors and $w = \sum_{i=1}^{3} \alpha_i y_i x_i = 2(1)(-1) + 2(-1)0 + 0(-1)(1) = -2$ and $b = y_i w^T x_i = y_1 (-2)x_1 = 1 (-2)(-1) = -1$ ($\alpha_1 = 2 > 0$, α_1 is a support vector $\Rightarrow y_1(w^T x_1 + b) = 1$), which are the same as the solution obtained by solving the primary problem.

• Consider changing the label of x_3 into that of the opposite class, i.e., $y_3 = 1$. Then the problem becomes inseparable and last inequality in (***) becomes $w + b \ge 1$. Thus, from Fig 2.3 there is no feasible solution.

Decision boundary and support vectors for a linear SVM (svmhard.m)


```
%% symhard.m
% From A First Course in Machine Learning, Chapter 5.
% Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
% Hard margin SVM
clear all; close all;
%% Generate the data
x = [randn(20, 2); randn(20, 2) + 4];
t = [repmat(-1, 20, 1); repmat(1, 20, 1)];
%% Plot the data
ma = \{ 'ko', 'ks' \};
fc = \{[0 \ 0 \ 0], [1 \ 1 \ 1]\};
tv = unique(t);
figure(1); hold off
for i = 1:length(tv)
    pos = find(t==tv(i));
    plot(x(pos,1),x(pos,2),ma{i},'markerfacecolor',fc{i});
    hold on
end
```

```
%% Setup the optimisation problem
N = size(x, 1);
K = x*x';
H = (t*t').*K + 1e-5*eye(N);
f = repmat(1, N, 1);
A = []; b = [];
LB = repmat(0,N,1); UB = repmat(inf,N,1);
Aeq = t'; beq = 0;
% Following line runs the SVM
alpha = quadprog(H, -f, A, b, Aeq, beq, LB, UB);
% Compute the bias
fout = sum(repmat(alpha.*t,1,N).*K,1)';
pos = find(alpha>1e-6); \alpha_i's > 0 are support vectors
bias = mean(t(pos)-fout(pos));
```

$$Q(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$
$$\sum_{i=1}^{N} \alpha_i y_i = 0, \quad \alpha_i \ge 0, \quad i = 1, \dots, N$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$b = \frac{1}{\#(x_i \in S)} \sum_{x_i \in S} (y_i - \mathbf{w}^T x_i)$$

$$S = \{x_i | \alpha_i > 0\} \text{ be the set of SVs}$$

```
%% Plot the data, decision boundary and Support vectors
figure (1); hold off
                              \alpha_i's > 0 are support vectors for Classes 1 and 2
pos = find(alpha>1e-6);
plot(x(pos,1),x(pos,2),'ko','markersize',15,'markerfacecolor',[0.6 0.6 0.6],...
    'markeredgecolor', [0.6 0.6 0.6]);
hold on
for i = 1:length(tv)
    pos = find(t==tv(i));
    plot(x(pos,1),x(pos,2),ma{i},'markerfacecolor',fc{i});
end
xp = xlim;
% Because this is a linear SVM, we can compute w and plot the decision
% boundary exactly.
w = sum(repmat(alpha.*t,1,2).*x,1)';
yp = -(bias + w(1)*xp)/w(2);
plot(xp,yp,'k','linewidth',2)
```

Soft-Margin Support Vector Machines

• When linearly inseparable, there is no feasible solution, and the hard-margin support vector machine is unsolvable.

- The SVM is extended to inseparable case.
- Introduce slack variables $\xi_i \ge 0$ into $y_i(\mathbf{w}^T \mathbf{x_i} + b) \ge 1$.

$$\Rightarrow y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i, i = 1, \dots, N$$

If $\xi_i < 1$, this data is correctly classified.

If $\xi_i \ge 1$, this data is misclassified.

Fig. 2.4. Inseparable case in a two-dimensional space

• Minimize
$$Q(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{N} \theta(\xi_i), \theta(\xi_i) = \begin{cases} 1, \text{ for } \xi_i > 0 \\ 0, \text{ for } \xi_i = 0 \end{cases}$$
 subject to $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, \dots, N$

- This is a combinatorial optimization and difficult to solve
- Instead, we minimize $Q(\mathbf{w}, \mathbf{b}, \boldsymbol{\xi}) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i^p$, $\xi_i \ge 0$ subject to $y_i(\mathbf{w}^T x_i + b) \ge 1 \xi_i$, $i = 1, \ldots, N$ where $\boldsymbol{\xi} = (\xi_1, \ldots, \xi_N)^T$, C determines the trade-off between the maximization of margin and minimization of classification error, and p = 1 (l_1 soft-margin SVM), or $2(l_2$ soft-margin SVM)
- We call the obtained hyperplane the **soft-margin hyperplane**.

• Introduce the nonnegative Lagrange multipliers α_i and β_i , we obtain (p=1)

$$Q(\mathbf{w}, b, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + C \sum_{i=1}^{N} \xi_{i} + \sum_{i=1}^{N} \alpha_{i} \{1 - \xi_{i} - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)\} + \sum_{i=1}^{N} \beta_{i} (-\xi_{i}), i = 1, ..., N$$
(1)

• For the optimal solution, the following KKT conditions are satisfied

$$\frac{\partial Q(\mathbf{w}, b, \xi, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} y_{i} \boldsymbol{x}_{i} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{N} \alpha_{i} y_{i} \boldsymbol{x}_{i} \quad (*)$$

$$\frac{\partial Q(\mathbf{w}, b, \xi, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial b} = -\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \quad (**)$$

$$\frac{\partial Q(\mathbf{w}, b, \xi, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \xi_{i}} = \mathbf{C} - \alpha_{i} - \beta_{i} = 0 \quad \Rightarrow \alpha_{i} + \beta_{i} = \mathbf{C}, i = 1, \dots, N \quad (***)$$

$$\alpha_{i} \{1 - \xi_{i} - y_{i} (\mathbf{w}^{T} \boldsymbol{x}_{i} + b)\} = 0, i = 1, \dots, N \quad (2)$$

 $\beta_i \xi_i = 0, \qquad i = 1, \dots, N$

$$\alpha_i \geq 0, \beta_i \geq 0, \xi_i \geq 0, \qquad i = 1, \ldots, N$$

• Substituting (*), (**), (***) into ①, we obtain the dual problem.

Maximize

$$Q(\mathbf{w}, b, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + \sum_{i=1}^{N} \xi_{i} (\alpha_{i} + \beta_{i}) + \sum_{i=1}^{N} \alpha_{i} \{1 - \xi_{i} - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)\} + \sum_{i=1}^{N} \beta_{i} (-\xi_{i}),$$

$$= \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + \sum_{i=1}^{N} \alpha_{i} \{1 - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)\}$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

with respect to α_i subject to the constraints

$$\sum_{i=1}^{N} \alpha_i y_i = 0, C \ge \alpha_i \ge 0, i = 1, ..., N$$

• The only difference between l_1 soft-margin SVM and hard margin SVM is that α_i cannot exceed C (since $\alpha_i + \beta_i = C$, $\beta_i \ge 0$).

- Especially, ② and ③ are called KKT (complementarity) conditions
- From $\alpha_i + \beta_i = \mathbb{C}$, $\beta_i \xi_i = 0$ and ② there are three cases for α_i :
- 1. $\alpha_i = 0$. Then $\beta_i = C$, $\xi_i = 0$. Thus x_i is correctly classified
- 2. $0 < \alpha_i < C$. Then $\textcircled{2} \Rightarrow y_i(\mathbf{w}^T \mathbf{x}_i + b) 1 + \xi_i = 0$, and $\beta_i \neq 0, \Rightarrow \xi_i = 0$. Therefore, $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$ and \mathbf{x}_i is a support vector. We call the support vector with $C > \alpha_i > 0$ a good (unbounded) SV.
- 3. $\alpha_i = C$. Then $\textcircled{2} \Rightarrow y_i(\mathbf{w}^T \mathbf{x}_i + b) 1 + \xi_i = 0$ and $\xi_i \ge 0$. Thus \mathbf{x}_i is a support vector. We call the support vector with $\alpha_i = C$ a bad (bounded) SV. If $0 \le \xi_i < 1$, \mathbf{x}_i is correctly classified.
- If $\xi_i \geq 1$, x_i is misclassified

• Data associated with $S = \{x_i | C \ge \alpha_i > 0\}$ are SVs for Classes 1 and 2.

Then from $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$ (*), the decision function is

$$D(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{x_i \in S} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

- For the unbounded α_i , $b = y_i \mathbf{w}^T \mathbf{x}_i$ is satisfied.
- To ensure the precision of calculations, we take the average of b that is calculated for unbounded support vectors, $b = \frac{1}{\#(x_i \in G)} \sum_{x_i \in G} (y_i \mathbf{w}^T \mathbf{x}_i)$

where G is the set of good support vector

• Then unknown datum x is classified into:

$$\begin{cases} \text{Class 1, if } D(\mathbf{x}) > 0 \\ \text{Class 2, if } D(\mathbf{x}) < 0 \end{cases}$$

If D(x) = 0, x is on the boundary and thus is unclassifiable

```
% From A First Course in Machine Learning, Chapter 5.
% Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
% Soft margin SVM
clear all; close all;
%% Generate the data
x = [randn(20,2); randn(20,2)+4];
t = [repmat(-1, 20, 1); repmat(1, 20, 1)];
% Add a bad point
x = [x; 2 1];
t = [t;1];
%% Plot the data
ma = \{ 'ko', 'ks' \};
fc = \{[0 \ 0 \ 0], [1 \ 1 \ 1]\};
tv = unique(t);
figure(1); hold off
for i = 1:length(tv)
    pos = find(t==tv(i));
    plot(x(pos,1),x(pos,2),ma{i},'markerfacecolor',fc{i});
    hold on
end
```

```
%% Setup the optimisation problem
N = size(x, 1);
K = x*x';
H = (t*t').*K + 1e-5*eye(N);
f = repmat(1, N, 1);
A = []; b = [];
LB = repmat(0, N, 1);
UB = repmat(inf, N, 1);
Aeq = t'; beq = 0;
%% Loop over various values of the margin parameter
Cvals = [10 5 2 1 0.5 0.1 0.05 0.01];
for cv = 1:length(Cvals);
    응응
    UB = repmat(Cvals(cv), N, 1);
    % Following line runs the SVM
    alpha = quadprog(H, -f, A, b, Aeq, beq, LB, UB);
    % Compute the bias
    fout = sum(repmat(alpha.*t,1,N).*K,1)';
    pos = find(alpha>1e-6); \alpha_i's > 0 are support vectors
    bias = mean(t(pos)-fout(pos));
```

$$Q(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$
$$\sum_{i=1}^{N} \alpha_i y_i = 0, \quad \mathbf{C} \ge \alpha_i \ge 0, \quad i = 1, \dots, N$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$b = \frac{1}{\#(x_i \in G)} \sum_{x_i \in G} (y_i - \mathbf{w}^T x_i)$$

$$G = \{x_i | \mathbf{C} > \alpha_i > 0\}$$

```
%% Plot the data, decision boundary and Support vectors
   figure (1); hold off
  pos = find(alpha>1e-6);
   plot(x(pos,1),x(pos,2),'ko','markersize',15,'markerfacecolor',[0.6 0.6 0.6],...
       'markeredgecolor', [0.6 0.6 0.6]);
   hold on
   for i = 1:length(tv)
       pos = find(t==tv(i));
       plot(x(pos,1),x(pos,2),ma{i},'markerfacecolor',fc{i});
   end
   xp = xlim;
   yl = ylim;
   % Because this is a linear SVM, we can compute w and plot the decision
   % boundary exactly.
   w = sum(repmat(alpha.*t, 1, 2).*x, 1)';
   yp = -(bias + w(1)*xp)/w(2);
  plot(xp, yp, 'k', 'linewidth', 2);
   ylim(yl);
  ti = sprintf('C: %g', Cvals(cv));
   title(ti);
   pause
```

end

Mapping to a High-Dimensional Space: Kernel Tricks

• If the training data are not linearly separable, to enhance linear separability, the original input space is mapped into a high-dimensional dot-product space called the **feature space**.

Nonlinear decision boundary

• Using a nonlinear $g(x) = (g_1(x), ..., g_l(x))^T$, that maps the *d*-dimensional input vector x into the *l*-dimensional feature space

• The linear decision function

$$D(x) = \mathbf{w}^T \mathbf{g}(x) + b$$

where $\mathbf{w} \in \mathbb{R}^l$ and b is a bias term.

• According to the Hilbert-Schmidt theory, if a symmetric H(x, x') satisfies

$$\sum_{i,j=1}^{N} h_i h_j H(\boldsymbol{x_i}, \boldsymbol{x_j}) \ge 0$$

for all N, x_i , and h_i , where $h_i \in \mathbb{R}$, \exists a g(x) that maps x into the dot-product feature space

$$H(\mathbf{x}, \mathbf{x}') = \mathbf{g}(\mathbf{x})^T \mathbf{g}(\mathbf{x}')$$
 (2)

• If ② is satisfied,

$$\sum_{i,j=1}^{N} h_i h_j H(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{i=1}^{N} \mathbf{g}(\mathbf{x}_i)^T h_i \right) \left(\sum_{j=1}^{N} \mathbf{g}(\mathbf{x}_j) h_j \right) \ge 0$$
 3

- ① or ③ is called **Mercer's condition**, and function satisfies ① or ③ is called **positive semidefinite kernel** or the **Mercer kernel** or simply the kernel.
- Using the kernel, the dual problem in the feature space is

Maximize
$$Q(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j H(\boldsymbol{x_i}, \boldsymbol{x_j})$$

subject to $\sum_{i=1}^{N} \alpha_i y_i = 0$, $C \ge \alpha_i \ge 0$, $i = 1, ..., N$

• Because H(x, x') is a positive semidefinite kernel, the optimization problem is a convex quadratic programming problem.

Decision function is

$$D(\mathbf{x}) = \mathbf{w}^T \mathbf{g}(\mathbf{x}) + b = \sum_{x_i \in S} \alpha_i y_i H(\mathbf{x}_i, \mathbf{x}) + b$$

$$b = y_j - \sum_{x_i \in S} \alpha_i y_i H(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \text{ is an unbounded support vector}$$

• To ensure stability of calculations, we take the average:

$$b = \frac{1}{\#(x_i \in G)} \sum_{x_j \in G} (y_j - \sum_{x_i \in S} \alpha_i y_i H(x_i, x_j))$$

• Then unknown datum *x* is classified into:

$$\begin{cases} \text{Class 1, if } D(\mathbf{x}) > 0 \\ \text{Class 2, if } D(\mathbf{x}) < 0 \end{cases}$$

If D(x) = 0, x is unclassifiable

Kernels used in SVM

• Linear Kernels:

If the problem is linearly separable, we use linear kernels: $H(x, x') = x^T x'$

• Polynomial Kernels:

The polynomial kernel with degree $m \ge 1$ is $H(x, x') = (x^T x' + 1)^m$ When m = 1, the kernel is the linear kernel by adjusting 1 into bWhen m = 2, d = 2, $H(x, x') = 1 + 2x_1x_1' + 2x_2x_2' + 2x_1x_1'x_2x_2' + x_1^2x_1'^2 + x_2^2x_2'^2$ $= g(x)^T g(x') \ge 0$ satisfy Mercer's condition where $g(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2)^T$

• In general, polynomial kernels satisfy Mercer's condition

• Radial Basis Function (RBF) Kernels:

$$H(\boldsymbol{x}, \boldsymbol{x}') = \exp(-\gamma ||\boldsymbol{x} - \boldsymbol{x}'||^2), \gamma > 0 \text{ controlling the radius}$$
$$= \exp(-\gamma ||\boldsymbol{x}||^2) \exp(-\gamma ||\boldsymbol{x}'||^2) \exp(2\gamma \boldsymbol{x}^T \boldsymbol{x}') \tag{*}$$

Because $\exp(2\gamma x^T x') = 1 + 2\gamma x^T x' + 2\gamma^2 (x^T x')^2 + \frac{2\gamma^3}{3!} (x^T x')^3 + \cdots$

is an infinite summation of polynomials \Rightarrow it is a kernel.

 $\exp(-\gamma ||x||^2)$ and $\exp(-\gamma ||x'||^2)$ are proved to be kernels and the product of kernels is also a kernel. Thus (*) is a kernel.

• The decision function is

$$D(\mathbf{x}) = \sum_{x_i \in S} \alpha_i y_i H(\mathbf{x}_i, \mathbf{x}) + b = \sum_{x_i \in S} \alpha_i y_i \exp(-\gamma ||\mathbf{x}_i - \mathbf{x}||^2) + b$$

Here, the support vectors are the centers of the radial basis functions.

```
%% svmqauss.m
% From A First Course in Machine Learning, Chapter 5.
% Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
% SVM with Gaussian kernel
clear all; close all;
%% Load the data
load t.csv
load X.csv
% Put in class order for visualising the kernel
[t I] = sort(t);
X = X(I,:);
%% Plot the data
ma = \{ 'ko', 'ks' \};
fc = \{[0 \ 0 \ 0], [1 \ 1 \ 1]\};
tv = unique(t);
figure (1); hold off
for i = 1:length(tv)
    pos = find(t==tv(i));
    plot(X(pos,1),X(pos,2),ma{i},'markerfacecolor',fc{i});
    hold on
    pause
end
```

```
%% Compute Kernel and test Kernel
[Xv Yv] = meshgrid(-3:0.1:3, -3:0.1:3);
testX = [Xv(:) Yv(:)];
N = size(X, 1);
Nt = size(testX, 1);
K = zeros(N);
testK = zeros(N,Nt);
% Set kernel parameter
gamvals = [0.01 \ 0.1 \ 1 \ 5 \ 10 \ 50];
for qv = 1:length(gamvals)
     응응
     qam = qamvals(qv);
                               \boldsymbol{H}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp(-\gamma ||\boldsymbol{x}_i - \boldsymbol{x}_j||^2)
     for n = 1:N
          for n2 = 1:N
              K(n,n2) = \exp(-\text{gam*sum}((X(n,:)-X(n2,:)).^2));
          end
          for n2 = 1:Nt
              testK(n,n2) = exp(-gam*sum((X(n,:)-testX(n2,:)).^2));
          end
     end
     figure (1); hold off
     imagesc(K);
     ti = sprintf('Gamma: %g',gam);
     title(ti);
```

```
% Construct the optimisation
   H = (t*t').*K + 1e-5*eye(N);
   f = repmat(1, N, 1);
  A = []; b = [];
  LB = repmat(0, N, 1);
  UB = repmat(inf, N, 1);
  Aeq = t'; beq = 0;
  % Fix C
  C = 10;
  UB = repmat(C, N, 1);
   % Following line runs the SVM
   alpha = quadprog(H, -f, A, b, Aeq, beq, LB, UB);
   fout = sum(repmat(alpha.*t,1,N).*K,1)';
   pos = find(alpha>1e-6);
   bias = mean(t(pos)-fout(pos));
   % Compute the test predictions
   testpred = (alpha.*t)'*testK + bias;
   testpred = testpred';
```

$$Q(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{H}(\mathbf{x}_i, \mathbf{x}_j)$$
$$\sum_{i=1}^{N} \alpha_i y_i = 0, \quad \mathbf{C} \ge \alpha_i \ge 0, \quad i = 1, \dots, N$$

 α_i 's > 0 are support vectors

$$\sum_{x_i \in S} \alpha_i y_i \exp(-\gamma ||\mathbf{x}_i - \mathbf{x}||^2) + b$$

```
% Plot the data, support vectors and decision boundary
   figure (2); hold off
   pos = find(alpha>1e-6); \alpha_i's > 0 are support vectors
   plot(X(pos,1),X(pos,2),'ko','markersize',15,'markerfacecolor',[0.6 0.6 0.6],...
       'markeredgecolor', [0.6 0.6 0.6]);
   hold on
   for i = 1:length(tv)
       pos = find(t==tv(i));
       plot(X(pos,1),X(pos,2),ma{i},'markerfacecolor',fc{i});
   end
   contour(Xv, Yv, reshape(testpred, size(Xv)), [0 0], 'k');
   ti = sprintf('Gamma: %q',qam);
   title(ti);
   pause
```

end

Summary of Kernel Trick

- A kernel function, $H: \mathbb{R}^l \times \mathbb{R}^l \to \mathbb{R}$ where $H(x, x') = g(x)^T g(x')$
- $\mathbf{w} = \sum_{x_i \in S} \alpha_i y_i \, \mathbf{g}(\mathbf{x}_i)$, where S is the set of support vectors.
- Given a test pattern \mathbf{x} , we can classify it based on $D(\mathbf{x}) = \mathbf{w}^T \mathbf{g}(\mathbf{x}) + b$ by $\sum_{x_i \in S} \alpha_i y_i \mathbf{g}(\mathbf{x}_i)^T \mathbf{g}(\mathbf{x}) + b$

• b is obtained by

$$b = y_j - \sum_{x_i \in S} \alpha_i y_i \, \boldsymbol{g}(\boldsymbol{x}_i)^T \boldsymbol{g}(\boldsymbol{x}_i), \, \boldsymbol{x}_i \text{ is a good support vector}$$

		True Status			
		Yes	No		
Predicted status	Yes	True Positive (TP)	False Positive (FP) Type I error	Positive Predictive Rate, Precision TP/(TP+FP)	False Discovery Rate FP/(TP+FP)
	No	False Negative (FN) Type II error	True Negative (TN)	False Omission Rate FN/(FN+TN)	Negative Predictive Rate TN/(FN+TN)
Total number		True positive Rate Sensitivity, Recall TP/(TP+FN)	False positive Rate FP/(FP+TN)	F1 score =2*precision*Recall/ (precision+Recall)	
Accuracy (TP+TN)/T		False Negative Rate FN/(TP+FN)	True Negative Rate Specificity TN/(FP+TN)		

```
%% symroc.m
% From A First Course in Machine Learning, Chapter 5.
% Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
% ROC analysis of SVM
clear all; close all;
%% Load the data
load t.csv
load X.csv
load testt.csv
load testX.csv
%% Compute the kernels
gam = 10; % Experiment with this value
N = size(X, 1);
Nt = size(testX, 1);
for n = 1:N
    for n2 = 1:N
        K(n, n2) = \exp(-\text{gam*sum}((X(n,:)-X(n2,:)).^2));
    end
    for n2 = 1:Nt
        testK(n, n2) = exp(-gam*sum((X(n,:)-testX(n2,:)).^2));
    end
end
```

```
%% Train the SVM
H = (t*t').*K + 1e-5*eye(N);
f = repmat(1, N, 1);
A = []; b = [];
LB = repmat(0,N,1); UB = repmat(inf,N,1);
Aeq = t'; beq = 0;
% Fix C
C = 10;
UB = repmat(C, N, 1);
% Following line runs the SVM
alpha = quadprog(H, -f, A, b, Aeq, beq, LB, UB);
fout = sum(repmat(alpha.*t,1,N).*K,1)';
pos = find(alpha>1e-6);
bias = mean(t(pos)-fout(pos));
%% Compute the test predictions
testpred = (alpha.*t)'*testK + bias;
testpred = testpred';
```

```
%% Do the ROC analysis
th vals = [min(testpred):0.01:max(testpred)+0.01];
sens = []; spec = [];
for i = 1:length(th vals)
    b pred = testpred>=th vals(i);
    % Compute true positives, false positives, true negatives, true
    % positives
    TP = sum(b pred==1 \& testt == 1);
    FP = sum(b pred==1 \& testt == -1);
    TN = sum(b pred==0 \& testt == -1);
    FN = sum(b pred==0 \& testt == 1);
    % Compute sensitivity and specificity
    sens(i) = TP/(TP+FN);
    spec(i) = TN/(TN+FP);
end
%% Plot the ROC curve
figure (1); hold off
cspec = 1-spec;
cspec = cspec(end:-1:1);
sens = sens(end:-1:1);
plot(cspec, sens, 'k')
%% Compute the AUC
AUC = sum(0.5*(sens(2:end)+sens(1:end-1)).*(cspec(2:end) - cspec(1:end-1)));
fprintf('\n AUC: %g\n', AUC);
```

ROC curve (svmroc.m)

The ROC curve traces out two types of error as we vary the threshold value for the prediction values $\sum_{x_i \in S} \alpha_i y_i \exp(-\gamma ||x_i - x||^2) + b$. The actual thresholds are not shown. The true positive rate is the sensitivity: the fraction of test data (labeled 1) that are correctly identified, using a given threshold value. The false positive rate is 1-specificity: the fraction of test data (labeled -1) that we classify incorrectly as 1, using that same threshold value. The ideal ROC curve hugs the top left corner, indicating a high true positive rate and a low false positive rate.