Support Vector Machine
4 FRT AT XA

Credit:
Chap?2, Support Vector Machines for Pattern Classification, Shigeo Abe, 2005
Chap5. A First Course in Machine Learning, 2ed, Simon Rogers and Mark Girolami, 2017

Hard-Margin Support Vector Machines

 Let N d-dimensional training inputs x; (1=1, ..., N) belong to Class 1
or 2 and the labels be y; =1 for Class 1 and —1 for Class 2.

* |f data are linearly separable, we can determine the decision function:
D(x)=wlx+b

where w IS an d-dimensional vector, bisabiasterm,1=1,..., N
T >0 for y;=1,
WX +b{<0 for y;=-1 @

 Because the training data are linearly separable, no training data satisfy
wix+b=0

« To control separability, instead of (1), we consider

T. > 1 for y;=1,
wxl+b{<1 for y;=—1 ©

Here, 1 and —1 can be replaced by a constant a (> 0) and —a.

* (2) is equivalent to
yiwlx; +b)=>1,i=1, ..., N

 The hyperplane D(x) = wlx+b=c for—-1<c<1
forms a separating hyperplane that separates x; (I=1,..., N).

* When ¢ = 0, the separating hyperplane is in the middle of the two
hyperplanes with ¢ =1 and —1.

 The distance between the separating hyperplane and the training
datum nearest to the hyperplane is called the margin

* The hyperplane with the maximum margin is called the optimal
separating hyperplane

* The margin is a function of w. Training the SVM consists of learning a
w that maximizes the margin. So, margin is important.

Optimal separating hyperplane in a two-dimensional space

Optimal hyperplane

Maximum

. mfrgln

Normal distance between x and the hyperplane
* Xproj. Projection of x onto the hyperplane D(x) = 0.
* d : the normal distance between x and x,,;,;.

w

o p— . |
X = Xproj iy

X
D(x) =wlx+b PO

=W (X0, + d—)+b

D(x) <0

=W xpm]+b+d 2= 04d||wl]]

||wl]

Cost function for obtaining the optimal separating hyperplane

. pep)| _ 41, _|pGo| _|-1|_ 1

= Tl | = Tl % = [Twl | = Jiwil] = Tiwl
o — _ 2

Margin =d, +d_ = T

* The optimal separating hyperplane can be obtained
by minimizing
QW) =3 ||w]|? ®

with respect to w and b subject to the constraints

yi(wai+b)2 1,i:1 N @

Optimization with m inequality constraints
Find x = [xq, -+, x,]" that
Minimize F(x) D
subjectto g;(x) <0,i=1,---,m ®

If x satisfies the inequality constraints (2), it is said to be feasible.
Otherwise it Is called infeasible

The ith constraint g;(x) < 0 is said to be active at a point x if g;(x) = 0.

The constraints (2) can be converted to equality constraints by adding
positive slack variables to get:

Minimize F(x) D

subjectto g;(x) +yf =0,i=1,---,m @

Optimization with m inequality constraints

(D @) is an optimization problem with only m equality constraints
Lety = [y, ym]" A= [Ay, -, A]Y, the Lagrangian has the form:

Ly, 2) = F(x) + Zx (5:0) +¥D),

which has n+2m unknown x*, y and /1*

The optimal conditions are
oL oF - g
0 (x)+zki 9;(x)

_— — 0’

0x = 0x _ 0x @
I =1

— =0 = 2)\y; =0, =1,

3y, iYi l m ®

oL 5 ,

—=0 = g;(x)+y7 =0, i=1,--m ®

dA;

4)®) (B are usually called the Karush—Kuhn—Tucker (KKT) conditions

Optimization with m inequality constraints
@ = 2% s a linear combination of 24i%

ox ox

with 2; = 0

A;y; =00 =eitherd; =0=1vy; # 0and g;(x) + y? = 0 = g;(x) < 0 (inactive)
or A #0=y;=0and g;(x) +y? =0 = g;(x) = 0 (active).
= A;g;(x) = 0 (we will show 2; > 0 when g;(x) = 0)

Combining (4& (5), one concludes that at the optimal solution, oF(x)

Y IS a

linear combination of the gradients of active constraints.

&(x)

Feasible region

An illustration of the optimality conditions for inequality constraints; VF(x)

the feasible region is defined by 3 constraints and at the optimal
point, g, (x) and g, (x) are active. At this point, VF(x) is a linear
function of the gradients of the active constraints Vg, (x), Vg, (x)

Optimization with m inequality constraints

The necessary KKT condition for inequality constraints can thus be cast In
the standard form

OF () i | 0g;(0) _

0x; 7 Ox; i=1n @

i =1 i
Aigij(x) =0, complementarity condition j =1,---,m
9;(x) <0, j=1-m ©
}\]20, j:1;'°';m

Condition A; = 0 (10) for the inequality constraints g;(x) < 0 ensures F

will not be reduced by a move off any of the active constraints at x* to the
Interior of the feasible region.

Convert constrained into unconstrained optimization

» The square of the Euclidean norm w in (3)is to make the optimization
problem quadratic programming.

* The assumption of linear separability means that there exist w and b that
satisfy (4). We call the solutions that satisfy (4) feasible solutions.

» We first convert the constrained problem given by (3) and (4) into
the unconstrained problem

Ow, b, @) =5 w'w + 3% ai{1 —y;(W'x; +b)} &

where @ = (aq, . .., ay)! and «a; are the nonnegative Lagrange multipliers.

Karush-Kuhn-Tucker (KKT) conditions

 The optimal solution of (5) is given by minimizing w.r.t w and b and
maximizing w.r.t a; (>0) satisfying the following KKT conditions

a0(w, b, a

o p—)_w YL i yixi=0=2w=21 0y x5 ()
o0(w, b, a

O(-) {V La; y; =0 (**)
@il = yi(W'x; + D)0, i=1,..., N ©

« (6 are called KKT complementarity conditions: a; =0, or a; > 0
and y;(w!x; + b)=1 must be satisfied.

* The training data x; with a; > 0 are called support vectors

« Substituting (*) and (x=) into (5), we obtain the dual problem.
Maximize
Q(W a)——w w4+ L i{l—J’i(WTx""b)}

Zl 1“13’1 Z] 1“]3’] Z 12l —y; (2] 1 ViXj xl+b)}
{vlal % 121 1““]3113’]75 x] _bzl 1 & Yi

—_ N
_ 1= 1“1 Z 12 ala]yly]xix]—bxo

W.I.t. a; subject to

* This Is the and 1t Is In terms of a;’s only
= «;’s are used to get optimal w and b

» This Is a convex optimization problem. It is p033|ble to obtain a vector
corresponding to the global optimum. w = Y* . a; y; x; .

* Many of the a; are 0. Support Vectors (SVs) are the x;’ s corresponding to
the nonzero a;’ s. Let S = {x;|a; > 0} be the set of SVs.

a. By complementary slackness condition,
x; €S= a;>0=y;(wlx; + b)=1 = x; is the closest to the decision boundary:.

b. Optimal w = Y0, a; y; x; = 2.x,es @iyiXx; 1s alinear combination of SVs.

c.y; X y;(wlx; + b)=y; = b = y; — wlx; where i is such that a;> 0 .

. 1
d. Itis better to average the SVs: b = — 0e5) Yxesi —w'x;)

Making Prediction
 Data associated with «a;’s > 0 are support vectors for Classes 1 and 2.

-w =Y a;v; x; (¥), the decision function is (do not need to use w
and b explicitly, use a;> 0, y; and x; only)

D(x) =w'x+b= z a;yix;" x + (Vi— Z a;yix;" x;)

X;ES XiES

 Then unknown datum x is classified into:
Class1,if D(x) > 0
Class 2,if D(x) < O

If D(x) =0, x 1s on the boundary and thus Is unclassifiable

Example

 Consider a linearly separable case shown in Fig. 2.2, (x4, y{) = (-1,1),
(x5, v,) =(0,-1), (x3, y3) = (1,-1), The inequality constraints given by
y;(wlx; +b)>1,i=1,...,3are

—w+b=>1,-b=>1,—-(W+b)=1 (x*x)

 The region of (w, b) that satisfies (xx*x) are given by the shaded region In
Fig. 2.3. Thus the solution that minimizes ||w]||* is given by

b=-1w=-2. b
* The decision functionis D(x) = —2x — 1 | /
* The class boundary iIsx = —1/2

« x =0 and —1 are support vectors * /\ "

Class 1 Class 2 ~1
- B— i
-1 0 1 X
X1 X2 X3

. : : : Fig. 2.3. Region that satisfies constraints
Fig. 2.2. Linearly separable one-dimensional case 8 o b patEs ‘

* The dual problem IS to maximize
Q(a) Zl 1 & — Z 121 1 & a] yly]x x]1 (x1, ¥1) = (-1,1), (x2, ¥2) = (0,-1), (x3, y3) = (1,-1)

= o, + a, + as ——{al 14(—1)%+ay05(—1)0 +aq az(—1)(—1)+

00 (— 1)0+“2(1) (0)2"‘0‘2053(1)(—1)0 +
a301(—1)(—1) + az0,(—=1)*0 + a5(—1)*1}

1
=01 T 0y + 03 — 5(0‘1 + 03)? CEED)

subject to
2 a;yi=0 —ap —a3=0,a; =0,i=1,...,3
e Substituting o, =a; — a3 INtO (*¥**x), we obtain
O(a) = 204 —%(al + a3)?% subjecttoa; > 0,i=1, ..., 3

which I1s maximized when a; = 0, since a3 = 0

* Now QO(a) = 204 —%alz = —%(al —2)24+2, ;=0

which is maximized for a,= 2.
* The optimal solution for (x***) IS a;=2,a3 =0,a,=0; — o3 = 2

* Thereforex=—-1(a; =2 > 0) and 0 (a, = 2 > 0) are support vectors
andw = Y3 . a; yix; = 2(1)(=1) + 2(=1)0 + 0(—1)(1) = —2 and
b=vy,—wlx;=y; —(-2)x; =1—-(-2)(-1) = =1 (a; = 2 > 0, x4is
a support vector = vy, (w!x; + b)=1), which are the same as the solution
obtained by solving the primary problem.

* Consider changing the label of x5 into that of the opposite class, I.e., y3 =
1. Then the problem becomes inseparable and last inequality In (xx*x)
becomes w + b = 1. Thus, from Fig 2.3 there is no feasible solution.

Decision boundary and support vectors for a linear SVM (svmhard.m)

Maximal

|— support vectors

7

o\°

svmhard.m
From A First Course in Machine Learning, Chapter 5.
Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
Hard margin SVM

o® o0 o\° o\©

clear all;close all;
$% Generate the data
= [randn (20, 2),;randn (20, 2)+4];

X
t = [repmat(-1,20,1);repmat(1,20,1)];

$% Plot the data

ma = {'ko', 'ks'};
fc = {[0 O O], [1 1 11},
tv = unique (t);

figure(l); hold off

for 1 = 1l:length(tv)
pos = find(t==tv (1))
plot (x(pos,1l),x(pos,2),ma{i}, 'markerfacecolor', fc{i});
hold on

end

%% Setup the optimisation problem Qﬂﬁv
N = size(x,1);

K = x*x'

H= (t*t").*K + le-5*eye(N);

f = repmat(1,N,1);

A= []l;b=1[];

LB = repmat (0O,N,1); UB = repmat(inf,N,1);

Aegq = t';begq = 0;

$ Following line runs the SVM

alpha = quadprog(H,-f,A,b,Aeq,beq,LB,UB);

% Compute the bias
fout = sum(repmat (alpha.*t,1,N).*K,1)"

pos = find(alpha>le-06);

| @;’s>0 are support vectors |

bias = mean (t (pos)-fout (pos));

W = zalylxl

mlees(% w'x;)

S = {x;|a; > 0} be the set of SVs

%% Plot the data, decision boundary and Support vectors
figure(1l);hold off
pos = find(alpha>le-6); a;’s >0 are support vectors for Classes 1 and 2
plot (x (pos,1),x(pos,2), 'ko', 'markersize',15, 'markerfacecolor', [0.6 0.6 0.6], ...
'markeredgecolor', [0.6 0.6 0.6]);
hold on
for 1 = 1l:length(tv)
pos = find(t==tv (1))
plot (x(pos,1),x(pos,2),ma{1}, 'markerfacecolor', fc{i});
end

Xp = xlim;

Because this 1s a linear SVM, we can compute w and plot the decision
boundary exactly.

3
3

w = sum(repmat (alpha.*t,1,2).*x,1)"; N
vp = —(bias + w(l) *xp)/w(2); W = E a; Vi Xj
=1

plot (xp,yp, 'k', "linewidth', 2)

Soft-Margin Support Vector Machines

* When linearly inseparable, there is no feasible solution, and the hard-margin
support vector machine is unsolvable.

* The SVM Is extended to inseparable case.

e Introduce slack variables &; = 0 into y;(w!x; + b) > 1.

= y;(Wwix;+b) 21-5%,i=1,...,N e

Optimal hyperplane

If €;< 1, this data Is correctly classified.
If €,> 1, this data is misclassified.

0

» Minimize Q(w) =%IIWII2 + 21 0(%),0(%) = {(1) igl; 2 i 8

subjectto y;(wix; +b) = 1-&;,i=1,..., N

* This Is a combinatorial optimization and difficult to solve

+ Instead, we minimize Q(w, b, &) =~ |lwl|? + CZX, §”, § >0
subjectto y;(wix; +b) =1-¢,i=1,..., N

where & = (8, ...,&y)T, C determines the trade-off between the
maximization of margin and minimization of classification error, and

p =1 (I, soft-margin SVM), or 2(l, soft-margin SVM)

* We call the obtained hyperplane the soft-margin hyperplane,

* Introduce the nonnegative Lagrange multipliers a; and £5;, we obtain (p=1)
O(w, b, a, ﬁ):—w w+CYil, &+ X {1 — §—yi(w'x; + b)}
Z 1,81(‘EL) i=1,..., N @®

* For the optimal solution, the following KKT conditions are satisfied
aQ(W bé—la ﬁ) —W — Z

12;Y; X =0=>w = Zl 1Y X ()

oW
o0(w, b,¢,a,

O(abf ﬁ) Zl ;Y —() (**)
aQ(W,abE,iE, @ B) _~_ a; — B;=0 Da;+B=C,i=1,... N (+%)
aifl — & —yi(w'x; +b)}=0, i=1,..., N ©
BE =0, i=1,...,N 6

ZO,,BL'ZO,EL'ZO, i:1,...,N

« Substituting (*), (**), (**x) into (1), we obtain the dual problem.

Maximize
Ow, b¢, a PB) __W W‘I'Z L, &i(ag + By) +Z ciil — ‘Ei_Yi(WTxi + b)}
Z 1:81(E)
1

= EWTW + XL a1 —y;(whx; + b)}

Zl 1 & — Z 121 1““]3’13’]35 Xj
with respect to a; subject to the constraints
N a;y;=0,C>a; =0,i=1,..., N

* The only difference between |, soft-margin SVM and hard margin SVM is that
a; cannot exceed C (since a; + 5;=C, 5; = 0).

« Especially, @) and (3 are called KKT (complementarity) conditions

* From a; + B;=C, B;&; = 0 and (2) there are three cases for a;:
1.a;=0. Then ;=C, €; = 0. Thus x; Is correctly classified

2. 0 < a; < C. Then @:yi(wai + b) — 1+ Ei: 0, and :Bi *0,=> Ei: 0.
Therefore, y;(wlx; + b) = 1 and x; is a support vector. We call the

support vector with C > a; > 0 a good (unbounded) SV.

3. a; = C. Then @ =>y;(wlx; +b) —1+&=0and & > 0. Thus x; is a
support vector. We call the support vector with a; = C a bad (bounded) SV.

If 0 < §;<1, x; Is correctly classified.
If €, >1, x; I1s misclassified

» Data associated with S = {x;|C = a; > 0} are SVs for Classes 1 and 2.
Then fromw = Y. a; y; x; (%), the decision function is

D(X) =wlx+b= 2 aiyixiTx + b

Xi€ES
e For the unbounded «;, b = y;—w! x; is satisfied.

* To ensure the precision of calculations, we take the average of b that Is
calculated for unbounded support vectors, b = " (x_le(;) 2ixec (Vi — wlx;)

where G Is the set of good support vector

 Then unknown datum x is classified into:
Class1,ifD(x) > 0
Class 2,if D(x) < 0

If D(x) =0, x 1s on the boundary and thus Is unclassifiable

From A First Course in Machine Learning, Chapter 5.
Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
Soft margin SVM

clear all;close all;

o

$% Generate the data

o® o\© oo

X = [randn(20,2);randn (20,2)+4];

t = [repmat(-1,20,1);repmat(1,20,1)];
$ Add a bad point

X = [x;2 1];

t = [t;1];

o\©

% Plot the data

ma = {'ko','ks'};

fc = {[0O O 0],[1 1 171}%};

tv = unique(t);

figure(l),; hold off

for 1 = 1l:1length(tv)
pos = find(t==tv (1))
plot (x(pos,1),x(pos,2),ma{1}, 'markerfacecolor',fc{1});
hold on

end

$% Setup the optimisation problem

= size(x,1);
= x*x': Q(W) z zz] 1aa]yly]x x]

(t*t') .*K + le-5*eye (N);
= repmat (1,N,1);
= [1;b = [1; {Vlalyl 0, C=a;=0, i=1,...,N

R N > N
|

LB = repmat (0,N,1);
UB = repmat (inf,N,1);
Aegq = t';begq = 0;

$% Loop over various values of the margin parameter

Cvals = [10 5 2 1 0.5 0.1 0.05 0.01];
for cv = l:1length(Cvals);
UB = repmat (Cvals(cv),N,1);
$ Following line runs the SVM W = E ;i Vi Xj

alpha = quadprog(H,-f,A,b,Aeq, beqg, LB,UB);

% Compute the bias

fout = sum(repmat (alpha.*t,1,N).*K,1)"'; b = —Zx EG(yl W xl)
pos = find(alpha>le-6); |a;’s>0 are support vectors | #(x€G) T

bias = mean (t (pos)-fout (pos)); G = {XlC o ()}
L L

%% Plot the data, decision boundary and Support vectors
figure (1) ;hold off
pos = find(alpha>1le-6);
plot (x(pos,1),x(pos,2), 'ko', 'markersize', 15, 'markerfacecolor',[0.6 0.6 0.6], ...
'markeredgecolor', [0.6 0.6 0.6]);
hold on
for 1 = 1l:1length(tv)
pos = find(t==tv (1))
plot (x(pos,1),x(pos,2),ma{i1}, 'markerfacecolor', fc{i});

end
Xp = x1lim;
vyl = ylim;

o

% Because this is a linear SVM, we can compute w and plot the decision
% boundary exactly.

N

w = sum(repmat (alpha.*t,1,2).*x,1)"';
yp = —(bias + w(l)*xp)/w(2); W = E a; Vi X;
plot (xp,yp, 'k', "linewidth', 2); :

. =1
ylim(yl);
ti = sprintf('C: %g',Cvals(cv));
title(ti);
pause

end

C:10
6 T T T T T O T
5_
|
m}
ni B
O
[m| [m|
3_
2_
L1
L
1+ O
L
L .
0~ - .
L
. L
AL
. L
2L .
3 I I I I I I
-2 -1 0 1 2 4 5
C:2
6 T T T T T O T
5_
|
m}
m}
al B
[m]
m] od
3_
2_
L 1}
L]
1+ O
il .
L
0 - .
L
. L
Al
. -
oL .
3 | | | | | |
-2 -1 0 1 2 4 5

gOd

AR

2

[m]]

Mapping to a High-Dimensional Space: Kernel Tricks

 If the training data are not linearly separable, to enhance linear
separability, the original Input space IS mapped into a high-
dimensional dot-product space called the feature space.

INPUT SPACE FEATURE SPACE

Nonlinear decision boundary

» Using a nonlinear g(x)= (g;(x), ..., g;(x)) T, that maps the d-dimensional
Input vector x into the I-dimensional feature space

* The linear decision function
D(x) =wlig(x)+b

where w € R! and b is a bias term.

 According to the Hilbert Schmidt theory, if a symmetric H(x, x') satisfies
l] 1hhH(xu])>0 @

for all N, x;, and h;, where h; € R, 3 a g(x) that maps x into the

dot-product feature space

H(x,x') = g(x) "g(x) @

o |f @ IS satisfied,
l] 1hhH(xv])_(Z 1g(xl)Th)(2 19()h)>0 @

« (D or (@ is called Mercer’s condition, and function satisfies (1) or (3) is
called positive semidefinite kernel or the Mercer kernel or simply the kernel.

* Using the kernel, the dual problem In the feature space Is

Maximize QO(a) = Zl 1 A =3 Z 121 L i YiyiH (X, X;)
subjectto YN, a;v;=0,C>a; >0,i=1,..., N

» Because H(x, x") is a positive semidefinite kernel, the optimization problem
IS @ convex quadratic programming problem.

* Decision function is
Dx)=w'gx)+b=3,csa;y; H(x;,x) + b
b =y; — Yresyi H(x;, x;), x; is an unbounded support vector

* To ensure stability of calculations, we take the average:

1
b= #(x,€0) ijec;(J’j — ines aiYi H(xi’ x]-))

* Then unknown datum x 1s classified into:
Class1,if D(x) > 0
Class 2,if D(x) < 0

If D(x) =0, x Is unclassifiable

Kernels used in SVM

 Linear Kernels:
If the problem is linearly separable, we use linear kernels: H(x, x') = xTx’

* Polynomial Kernels:
The polynomial kernel with degree m > 1 is H(x,x') = (xTx' + 1)™
When m = 1, the kernel iIs the linear kernel by adjusting 1 into b

Whenm = 2,d = 2,
H(x,x") = 1+ 2xyx7 + 2X,%5 + 2X,X1XpX5 + XZX1° + x5%5°

=g(x) "g(x") =0 satisfy Mercer’s condition
where g(x) = (1,V2xq, V2x5,V2x, x5, x%, x5)T

* In general, polynomial kernels satisfy Mercer’s condition

« Radial Basis Function (RBF) Kernels:
H(x,x") = exp(—y||x — x'||?), ¥ > 0 controlling the radius
= exp(—vI|x||*)exp(—v||x'||*) exp(2yx"x") (*)

T arl — T ot 2, T N2 4 2V . T_\3
Because exp(2yx" x')=1+2yx"' x + 2y“(x"' x') +?(x x4 -
IS an infinite summation of polynomials = it is a kernel.

exp(—y||x| \2) and exp(—y/||x’||?) are proved to be kernels and the product
of kernels is also a kernel. Thus (*) Is a kernel.

* The decision function is
D(x) = ¥yesiyi Hxy, x) + b = ¥ es iy exp(—y||x; — x[|?) + b
Here, the support vectors are the centers of the radial basis functions.

o
°

3
3
3
3

S

vmgauss .m

From A First Course in Machine Learning, Chapter 5.
Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
SVM with Gaussian kernel

clear all;close all;

o9

[olnge]

L

oad the data

load t.csv
load X.csv

[t
X

00
)
ma

fc
tv

I

P

Put 1n class order for visualising the kernel

] = sort(t);
X(L,:);
lot the data

{'ko',"ks"};
{{0 0 0],[1 1 1]};
unique (t) ;

figure(l),; hold off
for 1 = 1l:length(tv)

end

pos = find(t==tv (1))

plot (X (pos,1),X(pos,2),ma{i}, 'markerfacecolor', fc{i});
hold on

pause

%% Compute Kernel and test Kernel
[Xv Yv] = meshgrid(-3:0.1:3,-3:0.1:3);
te tX=[v(:) Yv(:)];
N = size(X,1);

Nt = size(testX,1);

K = zeros (N) ;

testK = zeros (N,Nt);

% Set kernel parameter

gamvals = [0.01 0.1 1 5 10 501];

for gv = 1l:length (gamvals)

gam = gamvals (gv) ;

for n = 1:N H(x;, x;) = exp(—y||x; — x;][?)
for n2 = 1:N
K(n,n2) = exp(-gam*sum((X(n, :)-X(n2,:))."%2));
end
for n2 = 1:Nt
testK(n,n2) = exp(-gam*sum((X(n,:)-testX(n2,:)).%2));
end
end

figure(l),;hold off

imagesc (K) ;

ti = sprintf ('Gamma: %g',gam);
title (tl) ;

[e]

% Construct the optimisation N

N
1 N
H= (t*t').*K + le-5* (N) ; — E E E
. e eye Q(W, b, a) = a; —E . 1al~aj yiyjH(xi,xj)
.]=
i=1

repmat (1,N,1);

A= [lib = []; =1
LB = repmat (0,N,1); N .
UB = repmat (inf,N,1); i=1 & yi=0, C> OKL'Z 0, 1 = 1, c e, N

Aeg = t';beq = 0;

$ Fix C
C = 10;

UB = repmat(C,N,1);

% Following line runs the SVM
alpha = quadprog(H,-f,A,b,Aeq, beqgq,LB,UB);

fout = sum(repmat (alpha.*t,1,N).*K,1)"';
pos = find(alpha>le-6); |_a;’s >0 are support vectors |
bias = mean (t (pos)-fout (pos));

[e)

% Compute the test predictions
testpred = (alpha.*t)'*testK + bias; 2
E a;y; exp(—yl||lx; —x||*) + b
Xi€ES

testpred = testpred';

O

% Plot the data, support vectors and decision boundary
figure (2) ;hold off
pos = find(alpha>le-6); | a;’s>0 are support vectors |
plot (X (pos,1),X(pos,2), 'ko', 'markersize',15, 'markerfacecolor',[0.6 0.6 0.6], ...
'markeredgecolor',[0.6 0.6 0.6]);
hold on
for 1 = 1:1length (tv)
pos = find(t==tv (1))
plot (X (pos,1),X(pos,2),ma{i}, 'markerfacecolor', fc{i});

end

contour (Xv, Yv, reshape (testpred, size (Xv)), [0 0], "k");
ti = sprintf ('Gamma: %g',gam);

title(ti);

pause

end

=
=
o
£
=
m
0]

Gamma: 0.1

Gamma: 1

Gamma: 10

Gamma: 5

amma: 50

{

G

Gamma: 1
T T

Gamma: 0.1
T T

Gamma: 50
T T

Gamma: 10
T T

Gamma: 0.01
T T

Gamma: 5
T T

Summary of Kernel Trick

» A kernel function, H: R! x R' — R where H(x,x") = g(x) Tg(x")
* W = Des @Y g(x;), where S is the set of support vectors.

» Given a test pattern x, we can classify it based on D(x) = wig(x) + b by
Yxes iYi 9(x) "g(x) + b

* b Is obtained by
b=y;—Yresaiyi 9(x) Tg(x;), x; is a good support vector

True Status

Yes No

Predicted Yes True Positive False Positive Positive False
TP FP Predictive Rate, Discovery Rate
status (TP) (T g | error Precision FP/(TP+FP)
yP TP/(TP+FP)
No False Negative True Negative False Omission Negative

(FN) (TN) Rate Predictive Rate

Type Il error FN/(FN+TN) TN/(FN+TN)
Total number True positive Rate False positive Rate F1 score

Sensitivity, Recall =2*precision*Recall/

TP/(TP+FN) FP/(FP+TN) (precision+Recall)
Accuracy False Negative True Negative Rate

Rate Specificity

(TPHTN)T eyrpern) TN/(FP+TN)

o\©

svmroc.m
From A First Course in Machine Learning, Chapter 5.
Simon Rogers, 01/11/11 [simon.rogers@glasgow.ac.uk]
ROC analysis of SVM

clear all;close all;

%% Load the data

load t.csv

load X.csv

load testt.csv

load testX.csv

o® o° o° o©

%% Compute the kernels
gam = 10; % Experiment with this value
N = size(X,1);
Nt = size(testX,1);
for n = 1:N
for n2 = 1:N

K(n,n2) = exp(—gam*sum((X(n, :)-X(n2,:)).%2));

end
for n2 = 1:Nt

testK(n,n2) = exp(—-gam*sum((X(n, :)-testX(n2,:))

end
end

2))

%% Train the SVM

H= (t*t').*K + le-5*eye (N);
f = repmat(1,N,1);

A= [];b=1[];

LB = repmat (0,N,1); UB = repmat(inf,N,1);
Aeq = t';beqg = 0;

$ Fix C
C = 10;

UB = repmat (C,N,1);

% Following line runs the SVM
alpha = quadprog(H,-f£,A,b,Aeq,beqg,LB,UB);

fout = sum(repmat (alpha.*t,1,N).*K,1)"';
pos = find(alpha>le-06);
bias = mean (t (pos)-fout (pos));

%% Compute the test predictions
testpred = (alpha.*t) '*testK + bias;
testpred = testpred';

%% Do the ROC analysis

th vals = [min(testpred):0.0l:max(testpred)+0.01];
sens = []; spec = [];
for 1 = l:length(th vals)

o)

_pred = testpred>=th vals(1i);
Compute true positives, false positives, true negatives, true
positives
TP = sum(b pred==1 & testt == 1)
FP = sum(b pred==1 & testt == -1
TN = sum(b pred==0 & testt == -1
FN = sum(b pred==0 & testt == 1);
% Compute sensitivity and specificity
sens (i) = TP/ (TP+FN) ;
spec (i) = TN/ (TN+FP) ;
end
%% Plot the ROC curve

figure (1) ;hold off

o® o\©

) ;
)

°
14

cspec = l-spec;
cspec = cspec(end:-1:1);
sens = sens(end:-1:1);

plot (cspec, sens, 'k')

% Compute the AUC

AUC = sum(0.5* (sens(2:end) tsens(l:end-1)).* (cspec(Z2:end) - cspec(l:end-1)));
fprintf ('"\n AUC: %g\n',AUC);

ROC curve (svmroc.m)

1 I I I I I I I I

True positive rate (sensitivity) gs|

04f .
03l i
02F —
01F —

False positive rate (1-specificity)

0 | | | |
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The ROC curve traces out two types of error as we vary the threshold value for the prediction values
Dixies AiYi exp(—y|[x; — x||?) + b. The actual thresholds are not shown. The true positive rate is the sensitivity: the
fraction of test data (labeled 1) that are correctly identified, using a given threshold value. The false positive rate is 1-

specificity: the fraction of test data (labeled -1) that we classify incorrectly as 1, using that same threshold value. The ideal
ROC curve hugs the top left corner, indicating a high true positive rate and a low false positive rate.

