Neural Network

4FRTD T X TR

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 2.

Neural Network

* The models of Machine Learning can be implemented in
various forms. The neural network is one of them.

Training Data J

[Learning Rule J

Input Data ‘- Neural Network |) Output

\W x1, x2, and x3 are the input signals.
1
wl, w2, and w3 are the weights for the
Xy ——W> > J corresponding signals.
Wy b is the bias.
x3/

A node that receives three inputs.

* The circle and arrow of the figure denote the node and signal
flow, respectively.

* The information of the neural net is stored in the form of weights
and bias.

X2 W5 »)

The equation of the weighted sum can be written with matricesas: v = wx + b (Equation 2.1)

Where w and x are definedas : w=[w, w, w,] x=|x,

Finally, the node enters the weighted sum into the activation function and yields its output :

y=0(v)

Layers of Neural Network

* The group of square nodes in figure is called the input layer. They do not
calculate the weighted sum and activation function.

* The group of the rightmost nodes is called the output layer. The output
from these nodes becomes the final result of the neural network.

* The layers in between the input and output layers are called hidden
layers.

Input Layer Hidden Layers Output Layer

Single-Layer Neural Network Input Layer - Output Layer
Multi-Layer Shallow Neural | Input Layer - Hidden Layer - Output
Neural Network | Network Layer
Deep Neural Input Layer - Hidden Layers - Output
Network Layers

Single-layer Neural Network (Shallow) Multi-layer Neural Network Deep Neural Network

Example

Px) =x

>E}/ 4 1 >

A neural network with a single hidden layer. The activation function of each node is a linear function.

The first node of the hidden layer calculates the output as:
Weighted sum: v = (3x1) + (1x2) +1 = 6

Output: y = ¢(v) = v = 6

In a similar manner, the second node of the hidden layer calculates the output as:
Weighted sum: v = (2)(1) + (4><2) +1 =11
Output: y = ¢(v) = v = 11

M

atrix equation

1

2

|

:D\S
2
1

4

v=Wx+bhb

—— weights of the first node ——

—— weights of the second node ——

Lo ol b

Output: Y = EU(U) = U = |:6 }

11

3

Weighted sum: v = L_)

Output: Y = q;-(v) =v

Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.

2. Take the “input” from the training data { input, correct output }, and
enter it into the neural network. Obtain the output from the neural

network and calculate the error from the correct output.
3. Adjust the weights to reduce the error.

Error ——
4. Repeat Steps 2-3 for all training data /

Training Data ¢ -
g }— Input — Weight Update —|— Output —>§

{ Input, Correct output }

V4

Correct output

Training of a Single-Layer Neural Network: Delta Rule

Vi E; = di -V

d; is the correct output of the output node .

* The weight is adjusted in proportion to the input value, x; and
the output error, e;.

w, < wy. + e X, (Equation 2.2)

* Let us define the loss function for output node vy;

L= _(d _YL)Z d —Yi» Vi = 1Wl]x]
where m is the numbers of input nodes

* We minimize the loss function L w.r.t w;;

oL dy;

=e;(—1 = —e;x; v
aWij l()aWU *

* The steepest (gradient) decent method e
(k+1) _ (k) oL I —
lj l] —a aWij j
w
=W T ae;X;

* Or express as
Wij — Wij + aein

LU{.’. < wy. + EIE!I.JL'J.

X; = The input node J, (] =1, 2, 3, 4)
e; = The error of the output node |

& =d; -,

(Equation 2.2)

w;; = The weight between the output node I and input node |

a=Learningrate (0 <a<1)

The learning rate,a , determines how much the weight is changed per time.
If this value is too high, the output wanders around the solution and fails to converge.
In contrast, if it is too low, the calculation reaches the solution too slowly.

5.

6.

Initialize the weights at adequate values.

Take the “input” from the training data of { input, correct output } and
enter it to the neural network. Calculate the error of the output, y;, from

the correct output, d,, to the input.
e, =d, -y,
Calculate the delta rule:
Aw; = aex;

Adjust the weights as: w; < w; + Aw,

Perform Steps 2~4 for all training data.

Training Data

{Input, Correct output}

| —

/

— Input —>

WH+AW1}' 1—-—y—'>€9

Repeat Steps 2~5 until the error reaches an acceptable tolerance level.
(All training data goes through Steps 2-5 once, is called an epoch.)

Generalized Delta Rule

« For an arbitrary activation function, the delta rule is expressed
as

Ww; <= Wy +ﬂ5;xj (Equation 2.3)

* [t Is the same as the delta rule of the previous section, except
that e, Is replaced with o,
0. = QD’(L':.)E: (Equation 2.4)

'

e; = The error of the output node |
v; = The weighted sum of the output node |
@' = The derivative of the activation function ¢ of the output node |

* Let us define the loss function for output node vy;

= ‘(d —yi)?%, e =d; — Y, v; = XL WX, Vi
where m is the numbers of input nodes

* We minimize the loss function L; w.r.t Wi

dL; ago dv; ,
ow; (=D, owy;
* The steepest decent method
l(]k+1) l(]k) o a(vaij
()+a¢e%

* Or we may express the above equation as
Wij — Wij + ago'eixj

= @(v;)

* We can derive the delta rule with the sigmoid function, which
IS widely used as an activation function

The sigmoid function

The sigmoid function

d(1+e™)™! 2 r 1
dx =—(1+e*)*(—e)_1+e—x

o'(x) = o(x)(1-¢(x))
0, = (PI(UE)EI' » 0, = (Pr(”f)ef = ‘P(H:)(l_@(”:))ef

w; < w; + aﬁ”(”;—)(l_ﬁﬂ(v;—))eixj (Equation 2.5)

(1-)

1+e*

Stochastic Gradient Descent

* The Stochastic Gradient
Descent (SGD) calculates the = Weight Update — Training

error for each training data and
adjusts the weights immediately.

* |f we have 100 training data
points, the SGD adjusts the
weights 100 times.

Training Data

The SGD calculates the weight updates as: Aw,; = ®0,X;

Batch

* In the batch method, each weight update is calculated for all
errors of the training data, and the average of the weight
updates Is used for adjusting the weights.

The batch method calculates the
weight update as:

— Average of Weight Updates
- Training

1 N
AH}I}. = EZAWU(}'C) (Equation 2.6)
k=1
Aw;(k) is the weight update for the k-th

training data and N is the total number
of the training data. Training Data

Mini Batch

* It selects a part of the training
dataset and uses them for training
In the batch method.

—__Average of Weight Updates
= Training

* It calculates the weight updates of
the selected data and trains the
neural network with the averaged
weight update.

* It Is often utilized in Deep Learning,
which manipulates a significant
amount of data. Training Data

* Have speed from the SGD and
stability from the batch.

* The epoch is the number of
completed training cycles
for all of the training data.

* In the batch method, the
number of training cycles of
the neural network equals an
epoch.

* In the mini batch, the number
of training processes for one
epoch varies depending on
the number of data points in
each batch.

Training Data

— Average of Weight Updates
- Training

— epoch =1

Example: Delta Rule

« Consider a neural network that consists of three input nodes
and one output node.

* The sigmoid function is used for the activation function of the
output node.

1}-----
X ﬁ
1
\WI o(X) = ryp
X2 Wa X) >y J

X3/ The sigmoid function defined

* We have four training data points.

{OI OI 1) O}

 As they are used for supervised
learning, each data point consists of 0110
an input-correct output pair. 0,1,1,0;
* The last bold number of each dataset {1,0,1,1}

IS the correct output.
{1I 1) 1) 1}

* The delta rule for the sigmoid function, which is given by
Equation 2.5, Is the learning rule.

w; < w; +ap)1-¢(v))ex; (Equation25)

« Equation 2.5 can be rearranged as a step-by-step process, as
follows:

0, = qﬂ(”i)(1_@(”1'))Ei

511*";],- = o 5; X (Equation 2.7)

w; <« w; + Aw,

Implementation of the SGD Method

 The function DeltaSGD iIs the SGD method of the delta rule
given by Equation 2.7.

0, = (:O(Uz')(1_{}9(”5))Ef

Aw, = a0, X,

) (Equation 2.7)

w; <« w; +Aw,

Codin g Algorithm implementation ~ example/ DeltaSGD.m
Test program example/ TestDeltaSGD.m

» Take one of the data points and calculate the output, y.

» Calculate the difference between this output and the correct output, d.

» Calculate the weight update, dW, according to the delta rule.

« Using this weight update, adjust the weight of neural network.

* Repeat the process for the number of the training data points, N.

The function DeltaSGD(W, X, D)

DeltaSGD.m
1 function W = Deltal3aD(W, X, DI}
2 — alpha = 0.9;
K:
* W Is the argument that carries ij If“ i .

the weights. 6 - X = X(k,)
7 - d = Dik);
2

. 9 - v o= Wy,
« X and D carry the inputs and ol s - Simoid(v):
correct outputs of the training 1
. 12 — B =d - ¥;

data, respectively. ol elte = oH L.
14
15 — dW = alpha*delta*x; % delta rule
16
17 — Wely = WLy + dWily;
18 - W2y = Wy + dWidy;
19 — Wedy = W2y + dWi 3y,
20 — end

1 — &

The function Sigmoid(x)

1
2
3 —

function v = Slgmoldf x)
v =1/ {1 + expl{-x));
end

1.2

TestDeltaSGD.m

* This program calls the function
DeltaSGD, trains it 10,000 times,
and displays the output from the
trained neural network with the
Input of all the training data.

L B R = T B S T e B

.-a] [} — — — — — — — — — —
L2 — O v oo -1 & n B e M= O
| | | | | | | | | |

clear all

XH=[001;
01 1;
1 01;
1 11;
1;

D=10[0;0; 1; 11;

W= 2%and(1, 23 - 1;

for epoch = 1:10000
W= TDeltalaD{W, X, DI};
end

N=4;

for k= 1:N
=Xk, '
v = Wy
v = algmold()

end

% traln

% 1nference

 This code initializes the weights with random real numbers
between -1 and 1.

» Executing this code produces the following values. These
output values are very close to the correct outputs in D.

- 0.0102 |
0.0083
0.9932

10.9917

N = =

Implementation of the Batch Method

» DeltaBatch.m does not immediately
train the neural network with the
weight update, dW, of the individual
training data points.

* It adds the individual weight updates
of the entire training data to dWsum
and adjusts the weight just once
using the average, dWavg.

 This is the fundamental difference
that separates this method from the
SGD method.

2 -

2h —

alpha = 0.9;

dWsum = =zeros(3, 1);

N=4;

for k= L:N
=ik, '
d = Dik);

v o= Wy

v o= Blgmoldfw);

= =d - ¥
delta = w¥(1-vi*e;

dW = alpha*del ta*x;
dWsum = dWsum + 4W;

end
dWavg = dWsum [/ N;

Wly = W1y + dWawg(1l);
W2y = W2y + dWawz(2);
W3y = W3y + dWavg(3);
end

function W = DeltaBatch(W, X, In

=

Wm0 -1 oy ln e e B

[0 [0 = = = e e e e ek e
— O W oo -1 T ln B s [= T

— e
— delta

a

- v o= Slgmold(w);

d - ¥;
v¥(1-71%e;

— dW = alpha*delta*x;

- WLy + dWily;
- W2y + dWidy;
- W3y + dWi3);
- end

— end

DeltaSGD.m +
function W = DeltalsDiWw, X, D)

— alpha = 0.,9;
— N=4:
— for k= 1:N
- = Xk, 3
- d = Dik);
_ v o= Wy

® delta rule

L R S N . 1 LN I O T T e B)

-2 <2 <2 D B BB e e e e e e e e
L T B . T o L s Y o o = T 0 O Tt R o i |

dWsm

functlon W = DeltaBatch{W, X, I
alpha = 0.9;

zerosi 3, 17;

SR

1:H
Wk, o'
Diky;

=
Il

v o= Wy

v = Blgmoldiw);

e =d - ¥;
delta = ¥ 1-v)1%*e;

dW = alpha*del ta*x;

dWsum = dWsum + 4W;

end
dWawvg = dWsum / N;

Wily + dWawe(1)
W2y + dWawg(2);

W3y + dWawg(33 ;

* TestDeltaBatch.m calls in the
function DeltaBatch and trains the
neural network 40,000 times.

* All the training data is fed into the
trained neural network, and the
output is displayed.

1 0.0102 |
0.0083
0.9932

1 0.9917 |

— - O D

oo -1 T n B e M

T o Y S Y e TR % T % N e Y Y Y i N i N e e
oo e e K = O Mo 0 =1 M B s ao— O O
| | I | | | | | I | |

clear all

X=[00D1;
01 1;
101;
111;

— — O O

W= 2%randi 1, 3% - 1;

for epoch = 1:40000
W = DeltaBatch{W, ¥ 6 D);
end

N=4;
for k= 1:N0
x =Kk, -1';
v o=
v = algmold]w)
end

* As the third value, I1.e. the Z
coordinate, Is fixed as 1, the
training data can be visualized
on a plane as shown in figure.

* In this case, a straight border
line that divides the regions of
0 and 1 can be found easily.

* This Is a linearly separable
problem.

(1,0)

X

Comparison of the SGD and the Batch

¢ “SGDvsBatch.m” trains the neural
network 1,000 times for each

0.35

function, DeltaSGD and DeltaBatch. 3 E1 S - ach
g 0.25
. At each epoch, it inputs the training & 02|
data into the neural network and 5 015 |
calculates the mean square error of &
the output. EE“;

« SGD yields faster reduction of the 0 200 400 600 800 1000
learning error than the batch; the Epoch
SGD learns faster.

Limitations of Single-Layer Neural Networks

 Consider the same neural network that

was discussed in the previous section. {0,0,1, 0}
XT\Wr {O) 11 11 1}
Xz—%})—)y
X3/W3 {1) O) 1) 1}

« Assume that we have another four training
data points, as shown in the table. It {1,1,1, 0}
shouldn’t cause any trouble, right?

 We will now train it with the delta

rule using the SGD.

 When we run the code, the screen
will show the following values,
which consist of the output from the

trained neural network

corresponding to the training data.

* We can compare them with the
correct outputs given by D.

[0.5297
0.5000
0.4703

| 0.4409

& D =

What happened?

o = = O

oo =1 o b e e [

T " Y % Y % TR e TR i SO i B R A i e i e e
L I e o I e N o o L . 3 N o B L S R == R ¥
I | | | | | | I | | |

clear all

X=0001;
01 1;
101;
11 1;

= = = O

W= 2%rand({1, 3y - 1;

for epoch = 1:40000
W= DeltaOR(W, X, DI);
end

N=4;
for k= 1:N0
x =Xk, :)';
v = Wx;
v = algmnold(w)
end

% traln

% Inference

* One thing to notice from this
figure Is that we cannot
divide the regions of O and
1 with a straight line.

* However, we may divide it
with a complicated curve, as
shown In figure.

 This type of problem is said
to be linearly inseparable.

e The linearly
separable . This is because the single-layer neural
network is a model that linearly divides the input data space.

* In order to overcome this limitation of the single-layer neural
network, we need more layers in the network.

Training of Multi-Layer
Neural Network

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 3.

* |n an effort to overcome the practical limitations of the single-
layer, the neural network evolved into a multi-layer architecture.

* The previously introduced delta rule is ineffective for training
of the multi-layer neural network because the error is not
defined in the hidden layers.

« Back-propagation algorithm provided a systematic method to
determine the error of the hidden nodes. Once the hidden layer
errors are determined, the delta rule is applied to adjust the
weights.

* In the back-propagation algorithm, the output error starts from
the output layer and moves backward until it reaches the left

next hidden layer to the input layer.

* In back-propagation, the signal still flows through the
connecting lines and the weights are multiplied.

Back-Propagation Algorithm

« Consider a univariate logistic least-square model L = %(cp(wx + b) — t)?

aL 1 0
6W 2 ow

= (p(wx+b) —t) X %((p(wx +b) —t)

— (p(wx + b) — t)?

= (p(wx+b) —t) X @' (Wx+b)><%(wx+b)
= (p(wx+b)—t) X ¢ (Wwx+b) Xx

6_L 10
ob ~ 20b

= (p(wx +b) —t) X:—b@p(wx + b) —t)

— (p(wx + b) — t)*

= (pwx+b)—t) X" (wx+b) xaa—b(wx+b)
= (p(wx+b)—t) X" (wx+b)
» Disadvantages: Cumbersome calculation

Two derivations are nearly identical (redundant)
Repeated terms

Back-Propagation Algorithm

« Consider a univariate logistic least-square model L = %(cp(wx + b) — t)?
« A more structural way

Compute the loss Compute the derivatives: Compuke losg
Ziwx+b 752—;=y—t X t
y—;p(z) __ 9L _aLdy _ _ \, \
L==(y—t)? 2= =009 @) w7£—>cj > £
2 __aL_aLaZ_ _ b
W:aw_azaw_zx
=L _0Loz _ -4 N
=9 ozob ° Compuke eviviakives

* 7,2z, wand b are computed by program

Back-Propagation Algorithm

 Multivariate chain rule

/ \
%/'

Mathemakicsl expressions to be evalusted
v v
dAf _of dx | of dy
At - X dt >y dt
t t
values &[rzowty Gﬂn«pui?%l by P‘fﬂ gf*’@m

+|

i
IR
3%y

*y

Multi-layer Perceptron

@ @
1 1 1 (2)
” W1(1) vy @ Y Wiin N B S .y
1 > + — > >
(1) 4 W(Z) t
W1 1
(1) 0 2(? @
21 vgl) (2
2 X + |— I !
X2 1 + ' (2
(1)
Wz(z) t 2 W22 t
' ()) 2)
L/‘Jf‘l :z 1 w{}:_')

N T

Xy —2 v —Y, ———s U —Y,

Multi-layer Perceptron

[/J([ll) I) b\fZ.) L\)()_)
1 i
L A
S J(« Backward pass
>< >< \5(/ k=g, = (i = Vi) = —e
X, —— v ! YU, L g,,/ T — _ 0L _ 0L dyg 5
k=353 = —erp (vg) = =0
’\ 7\1\ ds Vi ayk ovy,
S wa) U—) W(Z) — oL . 0L OJvy —_5 (1)
LL 2 1), [)L)z.| kj — aW](CZ) avka ;2}) — ky]
 Forward pass (1) — 5%) _ oL 617(1) oL 6v(z)
] — 1 1 1
](1) =y2 W](ll) X, J 0y; 01 9y; 02 9y,
— —(5wD L5 w®)y = _oW
y® = cp((1)) = —(01wy;” + 02wy;7) = —¢;
_ (1)
_y2 @ @ (1 _ 0L _ oL 9%), D (1)
Vie = Zij=1Wy;j Yj R OO A (1) 9
Vi = ¢ (V) —= aL . av()

1 — -_ — .
L = 52i=1(dk — Yi)* Vit = 5w® T 5 v J(ll) i
ji

Multi-layer Perceptron: forward pass

4 (2) v
1
Wl(l) v v W11 B NN oy
X1 o4 —— = . +
1 2
w/ w/
1 (2)
2(1) ¢ 21 1
(1) Vo
X2 L S) gl @ e
1 - (1)
wy ot v W22 f
(D (1) (1) (2) (2) (1)
v w w X v w w
[1(1) = 1(1) 15)] [xll 2 Wix (Equation 3.1) [v1] =[1(;) 1(2) 3’1(1) 2 W,y (Equation 3.2)
[W1 Wp2 ? ? W1 Woa 11>
y(1) _<,0 (Ul(l))')’1] _ p(vy)
o= (o 2l o)
Y A (vz)

1
L= EZizl(dk — YR)Z

@ @
1 1 (2)
vg) yl() Wll V1

+ S ——— > >+ E— —_— V1

f (2) /%

(2)
v(l) P 21
> + _2> > > —|— _b@_>
(1) W(Z)
t Y2 22 t
Yk = 6_yk =dx — Yk = —¢e
B = 0L _ oL v 1) ___ 9L _ L dy
= = = —5 . = = k = — ! - —

Wkj awg_) vy awl(j_) kY Vk ovy Oy 0vg exg (Vi) = —0k

(1) oL _ oL avl oL 6172
Yj (1) v, ay(l) v, ay(l)

=~ (5,w® + 52W(2)) e
/ (2) (2) N ¢ 1
Mo (vj(l)) = _51'(1) Wijm = Wiy — (2) WI\EJ) + adyy; o
w® @D 8L 1 1
—51"x; wi < w” = a T = wi + gy
Wii

o)=Y

O <

0

>y

@ (v) x €

The forward and backward processes
are identically applied to the hidden
nodes as well as the output nodes.

The only difference Is the error
calculation.

(1) (2)
11 11

(1)
12

@
W1 2

(1) (2)
21 W21

(1)
22

51:)‘_91 =d, - Y,

= ﬂ — d - = —p
Yk = aayk ak a Yk = —€k
— __ 0L L 0yg / _

= = = —e v = —5
Vg dvx Oy 0y kP (Vg) k

2
W22

23‘792=d2 — %,

* The first thing to calculate is delta, 0, of each node :

e, =dy; — Y,
0, = CP’(Vz)ez

e =d; —y;
o, = §0'(U1)€1

(Equation 3.3)

y; Is the output from the output node.
d; is the correct output from the training data.

¢'(+) is the derivative of the activation function of the output node.

v; Is the weighted sum of the corresponding node.

wd —

11 1 Wi

(2)
12 Wi2

(2)
Waq

N
(1)

(1)
g Woo = 62

(2)
Wao

523‘792:(12%

(2) —

kj:

(1) —
J

oL oL O0dvy (1)
— = -0 v
(2) 2) k
oWy, vy 6ij J
oL . dL 6171 JL 6172
6 (1) v,y 6y(1) v, 6y(.1)

= — (5,w® + 5w (f)) = —e®

« Since we have §; and §,, let's proceed leftward to the hidden nodes and

calculate the delta :

1 1 1 1 1 1
51 =9 () €1 52 =9 () €2 (Equation 3.4)
1 1 1 1 1 1
= (v/?) @ - ¢ (vV))ef” = ¢ (vi?) (1 — ¢ (v))es”
() and v() are the weight sums of the forward signals at the respective nodes.
(1) (2) (2)
= €1 — W11 W21 — wWr (Equation 3.5, 3.6)
(1) @ . @ 216,
€2 Wiz Wy

* |f we have additional hidden layers, we will just repeat the same
backward process for each hidden layer and calculate all the

deltas.

« Just use the following equation to adjust the weights of the
respective layers.

AWij = a5in

Wi« wi; + Aw;, (Equation 3.7)

x; Is the input signal for the corresponding weight.
This equation is the same as that of the delta rule of the previous section.

> D d1 — X

:><—d2—y2

* Consider the weight WZ(? for example. The weight WZ(? of figure can

be adjusted using Equation 3.7 as:

2 2 1
Wz(l) «— Wz(l) + a52y1()

yl(l) Is the output of the first hidden node.

oWy (50) = s

22 22

* The weight Wﬁ) of figure Is adjusted using Equation 3.7 as

Wl(i) « Wl(i) + a61(1)x1

X1 IS the output of the first input node.

Process to train the neural network using the
backpropagation algorithm

1. Initialize the weights with adequate values.

2. Enter the input from the training data { input, correct output }
and obtain the neural network’s output.

3. Calculate the error of the output to the correct output and the
delta, 0, of the output nodes.

e=d-—y
§=¢'(We=oW)(1-@®))e

4. Propagate the output node delta, o, backward, and calculate the deltas of
the immediate next (left) nodes.

e = WT§s
509 = ¢! (1)) (0

5. Repeat Step 4 until it reaches the hidden layer that is on the immediate
right of the input layer.

6. Adjust the weights according to the following learning rule.
AWij = a&in
Wij &« Wij + AWU

7. Repeat Steps 2-5 for every training data point.

8. Repeat Steps 2-6 until the neural network is properly trained.

Example: Back-Propagation

* The training data contains four

elements. The red bolded rightmost
number of the data Is the correct {0,0, 1, 0}
output.

. . . {0,1,1, 1}
* This data Is the one that the single-

layer neural network had failed to
learn. 1,0, 1, 1}

* Ignoring the third value, the Z-axis, 1.1 1 0}
of the input, this dataset actually it

provides the XOR logic operations.

« Consider a neural network that
consists of three input nodes and a
single output node.

* |t has one hidden layer of four nodes.

* The sigmoid function is used as the
activation function for the hidden
nodes and the output node.

XOR Problem

* The function BackpropXOR, which implements the back-
propagation algorithm using the SGD method, takes the
network’s weights and training data and returns the adjusted
weights.

|W,, W,]| = BackpropXOR(Wy,W,, X, D)

W, is the weight matrix between the input layer and hidden layer.
W, is the weight matrix between the hidden layer and output layer.
X and D are the input and correct output of the training data, respectively.

* The code takes point from the training

C
C

ataset, calculates the weight update,
W, using the delta rule, and adjusts

t

ne weights.

* The delta (deltal) calculation using the
back-propagation of the output delta
as follows :

el =W2' * delta;
deltal =y1 .* (1-vy1).* el;

The calculation of the error, el, is the implementation
of Equation 3.6.

function [W1, W2] = BackpropHOR(W1, W2, X, I
alpha = 0.9;

N=4;

for k= 1:N
=Xk, 1)
d = D(k);
vl = Wi*x:
vl = Blgmold({wl);
v o= W%l

v = Slgmold(w);

B =d - ¥;
delta = v % 1-v). *e;

el = Wl'*elta;
deltal = 1. *(1-v1).*el;

dW1l = alpha*deltal*x’;
Wl =Wl 4+ dwl;

dW2 = alpha*delta*yl';
o= W2 o+ dw2;
end
end

* The function Sigmoid, which the BackpropXOR code calls,
replaced the division with the element-wise division “ ./ ” to
account for the vector.

function v = Slgmold(x)
v =1 ./ {1 + expl-x));
end

* The modified Sigmoid function can operate using vectors as
shown by the following example :

Sigmoid([—1,0,1]) — [0.2689, 0.5000, 0.7311]

« Execute the code, and find the
following values are very close to
the correct output, D, indicating
that the neural network has been
properly trained.

'0.0060" 07
0.9888 1
09891 € P74
0.0134, 0

clear all

X=[00D1;
01 1;
10 1;
1117;

D=1r[0;1; 1I;01;

Wl = 2%rand(4, 23y - 1;
W2 = 2%pand(1, 43 - 1:

for epoch = 1:10000 % traln
[W]l, W2] = BackpropHEOR(WL, W2, X, D:
end

N =4; % Inference
for k = 1:N

x = H(k, :)';

vl = Wl*x;

vl = Slgmold({«1y;

v o= Wa¥y] -

v = mlgmold(w)
end

Momentum

e The momentum, m, Is a term that Is added to the delta rule for
adjusting the weight.

* The use of the momentum term drives the weight adjustment to
a certain direction to some extent, rather than producing an
Immediate change.

e It acts similarly to physical momentum, which impedes the
reaction of the body to the external forces.

Aw = adx

Aw;j = a0;x; - m = Aw + fm~ .

wi; « wi; + Awg; (Equation 3.7) W e w+m (Equation 3.8)
m =m

* m~ is the previous momentum and (3 is a positive constant that
IS less than 1.

* The following steps show how the momentum changes over
time :
m(0) =0
m(1) = Aw(1) + fm(0) = Aw(1)
m(2) = Aw(2) + fm(1) = Aw(2) + BAw(1)
m(3) = Aw(3) + fm(2) = Aw(3) + B{Aw(2) + BAW(1)}
= Aw(3) + fAW(2) + B?Aw (1)

* It Is noticeable from these steps that the previous weight update, I.e.
AwW(1), Aw(2), Aw(3), etc., is added to each momentum over the
process.

* Since , the older weight update exerts a lesser
Influence on the momentum.

* Although the influence diminishes over time,

. Thlerefore, the weight is not solely affec.ted by a particular weight update
value.

 Therefore,

* In addition, the momentum grows more and more with weight
updates. As a result, the weight update becomes greater and greater
as well. Therefore, the learning rate increases.

LOSS

Marble Rolling Down Hill

GD SLOWS DOWN
IN FLAT REGION

GD GETS TRAPPED
IN LOCAL OPTIMUM

VALUE OF NEURAL NETWORK PARAMETER

Avoiding Zig-Zagging with Momentum

OPTIMUM
STARTING .
POINT
STARTING
POINT ! WITH
" MOMENTUM I (b) WITHOUT MOMENTUM
¥
\ STARTING OPTIMUM
WITHOUT
MOMENTUM POINT \/-
(a) RELATIVE DIRECTIONS (c) WITH MOMENTUM

Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018

[W1 W2] = BackpropMmt(W1i, W2, X, D)
function [W1, W2] = BackpropMmt(W1, W2, X, D)

file Implements the alpha = 0.9;
back-propagation algorithm with the e
momentum. ol s (£
N = 4;
foi E ;(EM:}';
* The code Initializes the momentums, d = 0(k);
mmtl and mmt2, as zeros when it e D)
starts the learning process. A);
e =d-y;
delta = y.*(1-y).*%e;
 The weight adjustment formula is 1 = W2'delta;
modified to reflect the momentum as : ——
dW1 = alpha * deltal * x*; LT et
Mmtl = dW1 + beta * mmtl; 2 = alphatdeltatyi’;

—_ . t2 = dW2 + beta*mmt2;
W1 =W1+ mmtl; " ol

= W2 + mmt2;

* The file tests
the function BackpropMmt.

* The performance of the training Is
verified by comparing the output to
the correct output of the training
data.

clear all

X=[00 1;
01 1;
10 1;
1117;

D=1[0;1; 1; 01;

Wl = 2%randid, 3y - 1;
W2 = 2%rand(1, 43 - 1;

for epoch = 1:10000 % traln
[W1, W21 = BackpropMmt{W1, W2 3, I0;:
end

N =4; % 1nference
for k= 1:N0

x = XKk, :)';

w1 = Wil*x;

vl = Blgmoldiwly;

v o= Wi¥sl;

v = Rlgmold(w)
end

Cost Function and Learning Rule

* There are two primary types of cost functions

1 2
E_E(d Y)

M
1
2 > — v;)? (Equation 3.9)

=1

d-y

L = Z{—di In(y;)) — (1 —d;)In(1 —y;)} (Equation 3.10)

y; IS the output from the output node.
d; 1s the correct output from the training data.
M is the number of output nodes.

« Consider the following cost function which is called the

E=—-d ln(y) — (1 — d) ln(l — y) Equation 3.10

» Equation 3.10 is the concatenation of the following two equations :

P = —In(y) d=1
|-In1-vy) d=0

* Due to the definition of a logarithm,
. Therefore, the cross entropy cost function often teams up
with sigmoid and softmax activation functions in the neural network.

E=-In(y), d=1 i E=—In(l —y),d=0

y y

 This cost function is proportional to the error.

* The cross entropy function is much more sensitive to the error
than quadratic function.

Multi-layer Perceptron

wﬁ'.’\l D L«)‘fj: L Backward pass
___ oL
J , A =—=—(dy — 1—
x.><“vr" IR N U R o
k — —
i, Vg = =————=—(dr —Yr) = —ex= —0g
Do .>< vk Ay Oy
Xy —— Ui Y] >, L5 3;./'T (z) oL _ oL dvg _ o (1)
/1 M "o T awawy ~
| a)
oy Wy D\J[:}), w‘bf (1) oL _ 0L O0v,q oL 0v,
y] a (1) avl ay(l) avz ay(l)
(2) ()\ — (1)
* Forward pass - _(51“’ + 0w W2j) = - i
oD — 2 (1) (1) _ oL oL ay() W (@) (1)
Y 1 Wji - i Vi E5m T, @ 5 (1) =65 ¢ () —0;
y() _ ¢((1)) J 1)
@), (1) wi = 2= %) = —5Vx;
vk = Xjo1 Wi Yj e T aw avt ow (1)
Vi = @ (V)

L =3 ¥fe1(~di In() = (1 = di) In(1 = y,0)

oL 0GYho1(—di In(yi)—(1-d) In(1-¥1)))

av;

avi

0y 3’1

_ —(di=yi)

yi(1-y;)

L 0 SR (~di In(yi)~(1-di) In(1-y)))

avi
d(—d; In(y;)—(1-d;) In(1-y;))
dv;

dyi
_ 9=]n(yi)—(l—di))in(l—Yi)) = —d;—— (1-4d,)

d(—d; In(pv;))- (1 d;) In(1-¢(v;)))
dv;
_ 1 depv;) o 1 dp(v))
d (P(vl) ov; (d) 1-p(;) dv;

_ 4. (1 ~ Wl)) +(1—d)pw)

—d; + ¢(v;)
—(d;i—y;)

1- co(v)

—d;(1-y;)—(1-dyy;
1- 3’1 yi(1-y;)

()1 = o(vy))

The procedure In training the neural network with the sigmoid
activation function at the output node using the cross entropy

(1)Initialize the neural network’s weights with adequate values.

(2)Enter the input of the training data { input, correct output } to the
neural network and obtain the output. Calculate the error, and
calculate the delta, o, of the output nodes.

e =d — y
H=c¢e

(3) Propagate the delta of the output node backward and calculate the
delta of the subsequent hidden nodes.

e®) = wTs
50 = ¢f (09) 00

(4) Repeat Step 3 until it reaches the hidden layer that is next to the input layer.
(5) Adjust the neural network’s weights using the following learning rule :

AWij = C(5in
Wij &« Wij + AWU

(6) Repeat Steps 2-5 for every training data point.

(7) Repeat Steps 2-6 until the network has been adequately trained.

B P 5, —e

* The output and hidden layers employ
when the learning rule is based on the cross entropy and the sigmoid
function.

Regularization

 Overfitting Is a challenging problem that every technique of
Machine Learning faces.

* One of the primary approaches used to overcome overfitting Is

* |In a mathematical sense, the essence of regularization is

1% 2 1 2
] = 5 -El(di - y;)° + /1§||W||
=

M
1
] = Z{_di In(y;) — (1 —d)In(1 —y;)} + /15 lw|?

A is the coefficient that determines how much of the connection weight is reflected on the cost function.

This cost function maintains a large value when one of the output errors and the weight

remain large. Therefore, solely making the output error zero will not suffice in reducing
the cost function.

In order to drop the value of the cost function, both the error and weight should be
controlled to be as small as possible.

However, if a weight becomes small enough, the associated nodes will be practically
disconnected. As a result, unnecessary connections are eliminated, and the neural
network becomes simpler.

Example: Cross Entropy Function

{0,0, 1,0}
{0,1,1, 1}
{1,0,1, 1}
{1,1, 1, 0}

The training data (XOR data)
contains the same four elements.

* The sigmoid function is employed for the activation function of
the hidden nodes and output node.

function [W1, W2] = BackpropCE(WI1, W2, X, DI}

Cross Entropy Function | o

N=4;
]] . for k= 1:N
The function trains the XOR data using = Wk, <) % x = a colum vector
the cross entropy function. d = D(k);
. .. w1 = Wil¥*x;
It takes the neural network’s weights and training o1 = Siemsid(vl):
data and returns the adjusted weights. v o= Wikl
v = Blgmoldiw);
[W1,W2] = BackpropCE(W1,W2,X,D) . Ci-y o«
delta = e;
: : : : el = W' *delta;
W1 and W2 are the weight matrices for the input-hidden deltal = y1.%(1-y1).*el;

layers and hidden-output layers, respectively.
dWl = alpha*deltal*x’;

X and D are the input and correct output matrices of the V1= W1+ dil;

data, respectively.

dW2 = alpha*delta*v]l'; <
o= w2 4+ 4wz
end

erd

 This program calls the
function and trains
the neural network 10,000 times.

* The trained neural network yields
the output for the training data
iInput, and the result is

'0.00003] 07
0.9999 1
09998 | © P74
0.00036. 0.

clear all

=000 1;
01l1;
101;
111 71;

D=1r[0;1; 1; 01;

Wl = 2%cand(4, 37 - 1;
Wl = 2%cand(1, 437 - 1;

for epoch = 1:10000 % traln
[W1, W2] = BackpropCE(W1, W2, X, D;
end

N=4; % Inference
for k = L:N

x =Xk, 1"

vl = Wl*x;

vl = Slgmold{+1);

v o= Wa¥*s];

v = slgmold{w)
end

Comparison of Cost Functions

The following listing shows the
that compares the mean errors of the two
functions.

clear all

X=[0001;
o1l1;
1 a1,
1117;

D=10[010;0;1;117;

El = zeros(1000, 13;

E2 = =zeros(1000, 13;

Wil = 2*randid4, 33 - 1; ® Cross entropy

W2 = 2%rand(l, 43 - 1; !

Wil = wil; B Sum of squared error
w2z = Wiz, !

file

for epoch = 1:1000
[wi1l, w271 = BackpropCE(W11, W12, X, D;
[W21, W22] = BackproplOR(W21, W22, X, DI;

esl = 0;
esd = 0
N =4;
for k= 1:0
= Xk, -1
= Dik);
vl = Will*x;
vl = Slgmold{+l);
voo= Wid¥y]:
v = Slgmold(w);

esl = esl + id - w)M2;

vl = Wll*x;

vl = Slgmold(+1);

v o= W2l%y]:

v o= Blgmold({w);

esd = es2 + {d - ¥)°M2;
end
El{epoch) = esl / N;
EX{epoch) = es2 / N;

end

. D25
E m—— 055 ENtropy
I;_. D2 [rewesennu Sum of Squared Error |
E L]
E 0.15
|—
5 0.1
b
L
g 0.05
-
i?.'l: |:| * R
0 200 400 GO0 B0 1000
Epoch

« This program calls the BackpropCE and the BackpropXOR functions and trains
the neural networks 1,000 times each.

* The squared sum of the output error (esl and es?2) is calculated at every epoch
for each neural network, and their average (E1 and E2) is calculated.

« The cross entropy-driven training reduces the training error at a much faster rate.

4.

Homework

>
Tt

ou&pwt

-2

N = - - c .
= ¢ (Z) I+ e "% % > (He-%):.'?’(l—\/)

(!

Ye =? yp =? yg =7)
Compute mean square error E = E (1 — yg)?, 1is the desired output
Using the training sample x4, = 0.23, xg = 0.82 and the backward propagation

. . : OE .
algorithm for one iteration to compute w; <« w; + « S A= 0.7,i =1,2,3,4,5,6
l

Compute the forward pass using x, = 0.23, xg = 0.82 again and show that the mean
square error has been reduced.

