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Neural Network

• The models of Machine Learning can be implemented in 
various forms. The neural network is one of them.



• The circle and arrow of the figure denote the node and signal 
flow, respectively.

• The information of the neural net is stored in the form of weights
and bias.

A node that receives three inputs.

x1, x2, and x3 are the input signals.

w1, w2, and w3 are the weights for the 

corresponding signals.

b is the bias.



The equation of the weighted sum can be written with matrices as：

Where w and x are defined as：

Finally, the node enters the weighted sum into the activation function and yields its output：

(Equation 2.1)



Layers of Neural Network

• The group of square nodes in figure is called the input layer. They do not 
calculate the weighted sum and activation function.

• The group of the rightmost nodes is called the output layer. The output 
from these nodes becomes the final result of the neural network.

• The layers in between the input and output layers are called hidden 
layers.





Example

A neural network with a single hidden layer. The activation function of each node is a linear function.



The first node of the hidden layer calculates the output as:

In a similar manner, the second node of the hidden layer calculates the output as:



Matrix equation



Supervised Learning of a Neural Network

1. Initialize the weights with adequate values.

2. Take the “input” from the training data { input, correct output }, and 
enter it into the neural network. Obtain the output from the neural 
network and calculate the error from the correct output.

3. Adjust the weights to reduce the error.

4. Repeat Steps 2-3 for all training data



Training of a Single-Layer Neural Network: Delta Rule

• The weight is adjusted in proportion to the input value, xj and 
the output error, ei.

di is the correct output of the output node i.

(Equation 2.2)



• Let us define the loss function for output node 𝑦𝑖

𝐿 =
1

2
(𝑑𝑖−𝑦𝑖)

2, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖,  𝑦𝑖 = σ𝑗=1
𝑚 𝑤𝑖𝑗𝑥𝑗

where m is the numbers of input nodes  

• We minimize the loss function L w.r.t 𝑤𝑖𝑗
𝜕𝐿

𝜕𝑤𝑖𝑗
= 𝑒𝑖 −1

𝜕𝑦𝑖
𝜕𝑤𝑖𝑗

= −𝑒𝑖𝑥𝑗

• The steepest (gradient) decent method

𝑤𝑖𝑗
(𝑘+1)

= 𝑤𝑖𝑗
(𝑘)

− 𝛼
𝜕𝐿

𝜕𝑤𝑖𝑗

= 𝑤𝑖𝑗
(𝑘)

+ 𝛼𝑒𝑖𝑥𝑗

• Or express as
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝛼𝑒𝑖𝑥𝑗



xj =  The input node j, ( j =1, 2, 3, 4 )

ei = The error of the output node i

wij = The weight between the output node i and input node j

α = Learning rate ( 0 < α ≤ 1)

The learning rate,α , determines how much the weight is changed per time.

If this value is too high, the output wanders around the solution and fails to converge.

In contrast, if it is too low, the calculation reaches the solution too slowly.

(Equation 2.2)



1. Initialize the weights at adequate values.

2. Take the “input” from the training data of { input, correct output } and 
enter it to the neural network. Calculate the error of the output, yi, from 
the correct output, di, to the input.

3. Calculate the delta rule:

4. Adjust the weights as:

5. Perform Steps 2~4 for all training data.

6. Repeat Steps 2~5 until the error reaches an acceptable tolerance level.

(All training data goes through Steps 2-5 once, is called an epoch.)



Generalized Delta Rule 

• For an arbitrary activation function, the delta rule is expressed 
as 

• It is the same as the delta rule of the previous section, except 
that ei is replaced with δi

ei = The error of the output node i

vi = The weighted sum of the output node i

φ′ = The derivative of the activation function φ of the output node i

(Equation 2.3)

(Equation 2.4)



• Let us define the loss function for output node 𝑦𝑖

𝐿𝑖 =
1

2
(𝑑𝑖−𝑦𝑖)

2, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖, 𝑣𝑖 = σ𝑗=1
𝑚 𝑤𝑖𝑗𝑥𝑗 , 𝑦𝑖 = 𝜑(𝑣𝑖)

where m is the numbers of input nodes  

• We minimize the loss function 𝐿𝑖 w.r.t 𝑤𝑖𝑗
𝜕𝐿𝑖
𝜕𝑤𝑖𝑗

= 𝑒𝑖 −1
𝜕𝜑

𝜕𝑣𝑖

𝜕𝑣𝑖
𝜕𝑤𝑖𝑗

= −𝑒𝑖𝜑
′𝑥𝑗

• The steepest decent method

𝑤𝑖𝑗
(𝑘+1)

= 𝑤𝑖𝑗
(𝑘)

− 𝛼
𝜕𝐿

𝜕𝑤𝑖𝑗

= 𝑤𝑖𝑗
(𝑘)

+ 𝛼𝜑′𝑒𝑖𝑥𝑗

• Or we may express the above equation as
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝛼𝜑′𝑒𝑖𝑥𝑗



• We can derive the delta rule with the sigmoid function, which 
is widely used as an activation function

The sigmoid function



The sigmoid function

(Equation 2.5)

𝒅(𝟏 + 𝒆−𝒙)−𝟏

𝒅𝒙
= − 𝟏 + 𝒆−𝒙 −𝟐 −𝒆−𝒙 =

𝟏

𝟏 + 𝒆−𝒙
(𝟏 −

𝟏

𝟏 + 𝒆−𝒙
)



Stochastic Gradient Descent

• The Stochastic Gradient 
Descent (SGD) calculates the 
error for each training data and 
adjusts the weights immediately.

• If we have 100 training data 
points, the SGD adjusts the 
weights 100 times.

The SGD calculates the weight updates as:



Batch

• In the batch method, each weight update is calculated for all 
errors of the training data, and the average of the weight 
updates is used for adjusting the weights.

The batch method calculates the 

weight update as: 

∆wij(k) is the weight update for the k-th 

training data and N is the total number 

of the training data.

(Equation 2.6)



Mini Batch

• It selects a part of the training 
dataset and uses them for training 
in the batch method. 

• It calculates the weight updates of 
the selected data and trains the 
neural network with the averaged 
weight update.

• It is often utilized in Deep Learning, 
which manipulates a significant 
amount of data.

• Have speed from the SGD and 
stability from the batch.



• The epoch is the number of 
completed training cycles 
for all of the training data.

• In the batch method, the 
number of training cycles of 
the neural network equals an 
epoch.

• In the mini batch, the number 
of training processes for one 
epoch varies depending on 
the number of data points in 
each batch.



Example: Delta Rule

• Consider a neural network that consists of three input nodes 
and one output node.

• The sigmoid function is used for the activation function of the 
output node.

The sigmoid function defined



• We have four training data points.

• As they are used for supervised 
learning, each data point consists of 
an input-correct output pair.

• The last bold number of each dataset 
is the correct output.

{0, 0, 1, 0}

{0, 1, 1, 0}

{1, 0, 1, 1}

{1, 1, 1, 1}



• The delta rule for the sigmoid function, which is given by 
Equation 2.5, is the learning rule.

• Equation 2.5 can be rearranged as a step-by-step process, as 
follows:

(Equation 2.5)

(Equation 2.7)



Implementation of the SGD Method

• The function DeltaSGD is the SGD method of the delta rule 
given by Equation 2.7.

(Equation 2.7)



Coding

• Take one of the data points and calculate the output, y.

• Calculate the difference between this output and the correct output, d.

• Calculate the weight update, dW, according to the delta rule.

• Using this weight update, adjust the weight of neural network.

• Repeat the process for the number of the training data points, N.



The function DeltaSGD(W, X, D)

• W is the argument that carries 
the weights.

• X and D carry the inputs and 
correct outputs of the training 
data, respectively.



The function Sigmoid(x)



TestDeltaSGD.m

• This program calls the function 
DeltaSGD, trains it 10,000 times, 
and displays the output from the 
trained neural network with the 
input of all the training data.



• This code initializes the weights with random real numbers 
between -1 and 1.

• Executing this code produces the following values. These 
output values are very close to the correct outputs in D.



Implementation of the Batch Method

• DeltaBatch.m does not immediately 
train the neural network with the 
weight update, dW, of the individual 
training data points.

• It adds the individual weight updates 
of the entire training data to dWsum
and adjusts the weight just once 
using the average, dWavg.

• This is the fundamental difference 
that separates this method from the 
SGD method.





• TestDeltaBatch.m calls in the 
function DeltaBatch and trains the 
neural network 40,000 times.

• All the training data is fed into the 
trained neural network, and the 
output is displayed.



• As the third value, i.e. the Z 
coordinate, is fixed as 1, the 
training data can be visualized 
on a plane as shown in figure.

• In this case, a straight border 
line that divides the regions of 
0 and 1 can be found easily.

• This is a linearly separable 
problem.



Comparison of the SGD and the Batch

• “SGDvsBatch.m” trains the neural 
network 1,000 times for each 
function, DeltaSGD and DeltaBatch.

• At each epoch, it inputs the training 
data into the neural network and 
calculates the mean square error of 
the output.

• SGD yields faster reduction of the 
learning error than the batch; the 
SGD learns faster.



Limitations of Single-Layer Neural Networks

• Consider the same neural network that 
was discussed in the previous section.

• Assume that we have another four training 
data points, as shown in the table. It 
shouldn’t cause any trouble, right?

{0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}



• We will now train it with the delta 
rule using the SGD.

• When we run the code, the screen 
will show the following values, 
which consist of the output from the 
trained neural network 
corresponding to the training data.

• We can compare them with the 
correct outputs given by D.

What happened?



• One thing to notice from this 
figure is that we cannot 
divide the regions of 0 and 
1 with a straight line.

• However, we may divide it 
with a complicated curve, as 
shown in figure.

• This type of problem is said 
to be linearly inseparable.



• The single-layer neural network can only solve linearly 
separable problems. This is because the single-layer neural 
network is a model that linearly divides the input data space.

• In order to overcome this limitation of the single-layer neural 
network, we need more layers in the network.



Training of Multi-Layer 
Neural Network

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 3.



• In an effort to overcome the practical limitations of the single-
layer, the neural network evolved into a multi-layer architecture.

• The previously introduced delta rule is ineffective for training 
of the multi-layer neural network because the error is not 
defined in the hidden layers.

• Back-propagation algorithm provided a systematic method to 
determine the error of the hidden nodes. Once the hidden layer 
errors are determined, the delta rule is applied to adjust the 
weights.



• In the back-propagation algorithm, the output error starts from 
the output layer and moves backward until it reaches the left 
next hidden layer to the input layer.

• In back-propagation, the signal still flows through the 
connecting lines and the weights are multiplied.



Back-Propagation Algorithm
• Consider a univariate logistic least-square model  𝐿 =

1

2
(𝜑 𝑤𝑥 + 𝑏 − 𝑡)2

𝜕𝐿

𝜕𝑤
=

1

2

𝜕

𝜕𝑤
(𝜑 𝑤𝑥 + 𝑏 − 𝑡)2

= 𝜑 𝑤𝑥 + 𝑏 − 𝑡 ×
𝜕

𝜕𝑤
𝜑 𝑤𝑥 + 𝑏 − 𝑡

= 𝜑 𝑤𝑥 + 𝑏 − 𝑡 × 𝜑′ 𝑤𝑥 + 𝑏 ×
𝜕

𝜕𝑤
𝑤𝑥 + 𝑏

= 𝜑 𝑤𝑥 + 𝑏 − 𝑡 × 𝜑′ 𝑤𝑥 + 𝑏 × 𝑥

𝜕𝐿

𝜕𝑏
=

1

2

𝜕

𝜕𝑏
(𝜑 𝑤𝑥 + 𝑏 − 𝑡)2

= 𝜑 𝑤𝑥 + 𝑏 − 𝑡 ×
𝜕

𝜕𝑏
𝜑 𝑤𝑥 + 𝑏 − 𝑡

= 𝜑 𝑤𝑥 + 𝑏 − 𝑡 × 𝜑′ 𝑤𝑥 + 𝑏 ×
𝜕

𝜕𝑏
𝑤𝑥 + 𝑏

= 𝜑 𝑤𝑥 + 𝑏 − 𝑡 × 𝜑′ 𝑤𝑥 + 𝑏
• Disadvantages: Cumbersome calculation

Two derivations are nearly identical (redundant) 

Repeated terms                              



Back-Propagation Algorithm

• Consider a univariate logistic least-square model  𝐿 =
1

2
(𝜑 𝑤𝑥 + 𝑏 − 𝑡)2

• A more structural way    

Compute the derivatives:

ത𝑦 ≡
𝜕𝐿

𝜕𝑦
= 𝑦 − 𝑡

ҧ𝑧 ≡
𝜕𝐿

𝜕𝑧
=

𝜕𝐿

𝜕𝑦

𝜕𝑦

𝜕𝑧
= ത𝑦 𝜑′(𝑧)

ഥ𝑤 ≡
𝜕𝐿

𝜕𝑤
=

𝜕𝐿

𝜕𝑧

𝜕𝑧

𝜕𝑤
= ҧ𝑧 𝑥

ത𝑏 ≡
𝜕𝐿

𝜕𝑏
=

𝜕𝐿

𝜕𝑧

𝜕𝑧

𝜕𝑏
= ҧ𝑧 1

Compute the loss

𝑧 = 𝑤𝑥 + 𝑏
𝑦 = 𝜑 𝑧

𝐿 =
1

2
(𝑦 − 𝑡)2

• ത𝑦, ҧ𝑧, ഥ𝑤 and ത𝑏 are computed by program    



Back-Propagation Algorithm

• Multivariate chain rule



𝑦1
1

𝑦2
1

𝑥1

𝑥2

𝑤11
(1) 𝒗𝟏

𝟏



𝑤21
(1)

𝑤12
(1)

𝑤22
(1)

𝒗𝟐
𝟏


𝑤11
(2)

𝒗𝟏



𝑤21
(2)

𝑤12
(2)

𝑤22
(2)

𝒗𝟐

𝜑

𝜑

𝜑

𝜑

𝒚𝟏

𝒚𝟐

Multi-layer Perceptron



Multi-layer Perceptron

• Forward pass

𝑣𝑗
1
= σ𝑖=1

2 𝑤𝑗𝑖
(1)

𝑥𝑖

𝑦𝑗
(1)

= 𝜑 𝑣𝑗
1

𝑣𝑘 = σ𝑗=1
2 𝑤𝑘𝑗

(2)
𝑦𝑗
(1)

𝑦𝑘 = 𝜑 𝑣𝑘
𝐿 =

1

2
σ𝑘=1
2 (𝑑𝑘 − 𝑦𝑘)

2

• Backward pass

𝑦𝑘 ≡
𝜕𝐿

𝜕𝑦𝑘
= −(𝑑𝑘 − 𝑦𝑘) ≡ −𝑒𝑘

𝑣𝑘 ≡
𝜕𝐿

𝜕𝑣𝑘
=

𝜕𝐿

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕𝑣𝑘
= −𝑒𝑘𝜑

′ 𝑣𝑘 ≡ −𝛿𝑘

𝑤𝑘𝑗
(2)

≡
𝜕𝐿

𝜕𝑤
𝑘𝑗
(2) =

𝜕𝐿

𝜕𝑣𝑘

𝜕𝑣𝑘

𝜕𝑤
𝑘𝑗
(2) = −𝛿𝑘𝑦𝑗

(1)

𝑦𝑗
1
≡

𝜕𝐿

𝜕𝑦𝑗
1 =

𝜕𝐿

𝜕𝑣1

𝜕𝑣1

𝜕𝑦𝑗
1 +

𝜕𝐿

𝜕𝑣2

𝜕𝑣2

𝜕𝑦𝑗
1

= −(𝛿1𝑤1𝑗
(2)

+ 𝛿2𝑤2𝑗
(2)
) ≡ −𝑒𝑗

(1)

𝑣𝑗
1
≡

𝜕𝐿

𝜕𝑣𝑗
1 =

𝜕𝐿

𝜕𝑦𝑗
1

𝜕𝑦𝑗
1

𝜕𝑣𝑗
1 = −𝑒𝑗

1
𝜑′ 𝑣𝑗

1
≡ −𝛿𝑗

(1)

𝑤𝑗𝑖
(1)

≡
𝜕𝐿

𝜕𝑤
𝑗𝑖
(1) =

𝜕𝐿

𝜕𝑣𝑗
1

𝜕𝑣𝑗
1

𝜕𝑤
𝑗𝑖
(1) = −𝛿𝑗

(1)
𝑥𝑗



Multi-layer Perceptron: forward pass

𝑣1
1

𝑣2
1

=
𝑤11

1
𝑤12

1

𝑤21
1

𝑤22
1

𝑥1
𝑥2

≜ 𝑊1𝑥 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1

𝑦1
1

𝑦2
1

=
𝜑 𝑣1

1

𝜑 𝑣2
1

𝑣1
𝑣2

=
𝑤11

2
𝑤12

2

𝑤21
2

𝑤22
2

𝑦1
1

𝑦2
1

≜ 𝑊2𝑦
1 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.2

𝑦1
𝑦2

=
𝜑 𝑣1
𝜑 𝑣2

𝐿 =
1

2
σ𝑘=1
2 (𝑑𝑘 − 𝑦𝑘)

2

𝑦1
1

𝑦2
1

𝑥1

𝑥2

𝑤11
(1) 𝒗𝟏

𝟏



𝑤21
(1)

𝑤12
(1)

𝑤22
(1)

𝒗𝟐
𝟏


𝑤11
(2)

𝒗𝟏



𝑤21
(2)

𝑤12
(2)

𝑤22
(2)

𝒗𝟐

𝜑

𝜑

𝜑

𝜑

𝒚𝟏

𝒚𝟐



𝑦1
1

𝑦2
1

𝑥1

𝑥2

𝑤11
(1) 𝒗𝟏

𝟏



𝑤21
(1)

𝑤12
(1)

𝑤22
(1)

𝒗𝟐
𝟏


𝑤11
(2)

𝒗𝟏



𝑤21
(2)

𝑤12
(2)

𝑤22
(2)

𝒗𝟐

𝜑

𝜑

𝜑

𝜑

𝒚𝟏

𝒚𝟐

𝑦𝑘 ≡
𝜕𝐿

𝜕𝑦𝑘
= 𝑑𝑘 − 𝑦𝑘 ≡ −𝑒𝑘

𝑣𝑘 ≡
𝜕𝐿

𝜕𝑣𝑘
=

𝜕𝐿

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕𝑣𝑘
= −𝑒𝑘𝜑

′(𝑣𝑘) ≡ −𝛿𝑘𝑤𝑘𝑗
(2)

≡
𝜕𝐿

𝜕𝑤
𝑘𝑗
(2) =

𝜕𝐿

𝜕𝑣𝑘

𝜕𝑣𝑘

𝜕𝑤
𝑘𝑗
(2) = −𝛿𝑘𝑦𝑗

(1)

𝑦𝑗
1
≡

𝜕𝐿

𝜕𝑦𝑗
1 =

𝜕𝐿

𝜕𝑣1

𝜕𝑣1

𝜕𝑦𝑗
1 +

𝜕𝐿

𝜕𝑣2

𝜕𝑣2

𝜕𝑦𝑗
1

= − 𝛿1𝑤1𝑗
2
+ 𝛿2𝑤2𝑗

2
≡ −𝑒𝑗

(1)

𝑣𝑗
1
≡

𝜕𝐿

𝜕𝑣𝑗
1 =

𝜕𝐿

𝜕𝑦𝑗
1

𝜕𝑦𝑗
1

𝜕𝑣𝑗
1 = −𝑒𝑗

1
𝜑′ 𝑣𝑗

1
≡ −𝛿𝑗

(1)

𝑤𝑗𝑖
(1)

≡
𝜕𝐿

𝜕𝑤
𝑗𝑖
(1) =

𝜕𝐿

𝜕𝑣𝑗
1

𝜕𝑣𝑗
1

𝜕𝑤
𝑗𝑖
(1) = −𝛿𝑗

(1)
𝑥𝑗

𝑤𝑘𝑗
(2)

← 𝑤𝑘𝑗
(2)

− 𝛼
𝜕𝐿

𝜕𝑤𝑘𝑗
2 = 𝑤𝑘𝑗

2
+ 𝛼𝛿𝑘𝑦𝑗

1

𝑤𝑗𝑖
(1)

← 𝑤𝑗𝑖
(1)

− 𝛼
𝜕𝐿

𝜕𝑤𝑗𝑖
1 = 𝑤𝑗𝑖

1
+ 𝛼𝛿𝑗

(1)
𝑥𝑗



The forward and backward processes 
are identically applied to the hidden 
nodes as well as the output nodes.

The only difference is the error 
calculation.



• The first thing to calculate is delta, δ, of each node：

𝑒1 = 𝑑1 − 𝑦1
𝛿1 = 𝜑′ 𝑣1 𝑒1

𝑒2 = 𝑑2 − 𝑦2
𝛿2 = 𝜑′ 𝑣2 𝑒2

(Equation 3.3)

𝜑′ ∙ is the derivative of the activation function of the output node.

𝑦𝑖 is the output from the output node.

𝑑𝑖 is the correct output from the training data.

𝑣𝑖 is the weighted sum of the corresponding node.

𝑦𝑘 ≡
𝜕𝐿

𝜕𝑦𝑘
= 𝑑𝑘 − 𝑦𝑘 ≡ −𝑒𝑘

𝑣𝑘 ≡
𝜕𝐿

𝜕𝑣𝑘
=

𝜕𝐿

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕𝑣𝑘
= −𝑒𝑘𝜑

′(𝑣𝑘) ≡ −𝛿𝑘



• Since we have 𝛿1 and 𝛿2, let’s proceed leftward to the hidden nodes and 
calculate the delta：

𝑒1
1
= 𝑤11

2
𝛿1 +𝑤21

2
𝛿2

𝛿1
1
= 𝜑′ 𝑣1

1
𝑒1
1

= 𝜑 𝑣1
1

(1 − 𝜑 𝑣1
1

)𝑒1
1

𝑒2
1
= 𝑤12

2
𝛿1 +𝑤22

2
𝛿2

𝛿2
1
= 𝜑′ 𝑣2

1
𝑒2
1

= 𝜑 𝑣2
1

(1 − 𝜑 𝑣2
1

)𝑒2
1

(Equation 3.4)

𝑣1
1

and 𝑣2
1

are the weight sums of the forward signals at the respective nodes.

⇒
𝑒1
1

𝑒2
1

=
𝑤11

2
𝑤21

2

𝑤12
2

𝑤22
2

𝛿1
𝛿2

= 𝑊2
𝑇 𝛿1
𝛿2

(Equation 3.5, 3.6)

𝑤𝑘𝑗
(2)

≡
𝜕𝐿

𝜕𝑤
𝑘𝑗
(2) =

𝜕𝐿

𝜕𝑣𝑘

𝜕𝑣𝑘

𝜕𝑤
𝑘𝑗
(2) = −𝛿𝑘𝑦𝑗

(1)

𝑦𝑗
1
≡

𝜕𝐿

𝜕𝑦𝑗
1 =

𝜕𝐿

𝜕𝑣1

𝜕𝑣1

𝜕𝑦𝑗
1 +

𝜕𝐿

𝜕𝑣2

𝜕𝑣2

𝜕𝑦𝑗
1

= − 𝛿1𝑤1𝑗
2
+ 𝛿2𝑤2𝑗

2
≡ −𝑒𝑗

(1)



• If we have additional hidden layers, we will just repeat the same 
backward process for each hidden layer and calculate all the 
deltas.

• Just use the following equation to adjust the weights of the 
respective layers.

∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

(Equation 3.7)

𝑥𝑗 is the input signal for the corresponding weight.

This equation is the same as that of the delta rule of the previous section.



• Consider the weight 𝑤21
2

for example. The weight 𝑤21
2

of figure can 
be adjusted using Equation 3.7 as:

𝑤21
2
← 𝑤21

2
+ 𝛼𝛿2𝑦1

1

𝑦1
1

is the output of the first hidden node.



• The weight 𝑤11
1

of figure is adjusted using Equation 3.7 as：

𝑤11
1
← 𝑤11

1
+ 𝛼𝛿1

1
𝑥1

𝑥1 is the output of the first input node.

𝑣𝑗
1
≡

𝜕𝐿

𝜕𝑣𝑗
1 =

𝜕𝐿

𝜕𝑦𝑗
1

𝜕𝑦𝑗
1

𝜕𝑣𝑗
1 = −𝑒𝑗

1
𝜑′ 𝑣𝑗

1
≡ −𝛿𝑗

(1)

𝑤𝑗𝑖
(1)

≡
𝜕𝐿

𝜕𝑤
𝑗𝑖
(1) =

𝜕𝐿

𝜕𝑣𝑗
1

𝜕𝑣𝑗
1

𝜕𝑤
𝑗𝑖
(1) = −𝛿𝑗

(1)
𝑥𝑗



Process to train the neural network using the 
backpropagation algorithm

1. Initialize the weights with adequate values. 

2. Enter the input from the training data { input, correct output }

and obtain the neural network’s output.

3. Calculate the error of the output to the correct output and the

delta, δ, of the output nodes.

𝑒 = 𝑑 − 𝑦

𝛿 = 𝜑′ 𝑣 𝑒 = 𝜑 𝑣 1 − 𝜑 𝑣 𝑒



4. Propagate the output node delta, δ, backward, and calculate the deltas of 
the immediate next (left) nodes.

5. Repeat Step 4 until it reaches the hidden layer that is on the immediate 
right of the input  layer.

6. Adjust the weights according to the following learning rule.

7. Repeat Steps 2-5 for every training data point.

8. Repeat Steps 2-6 until the neural network is properly trained.

𝑒 𝑘 = 𝑊𝑇𝛿

𝛿 𝑘 = 𝜑′ 𝑣 𝑘 𝑒 𝑘

∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗



Example: Back-Propagation

• The training data contains four 
elements. The red bolded rightmost 
number of the data is the correct 
output.

• This data is the one that the single-
layer neural network had failed to 
learn.

• Ignoring the third value, the Z-axis, 
of the input, this dataset actually 
provides the XOR logic operations.

{0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}



• Consider a neural network that 
consists of three input nodes and a 
single output node.

• It has one hidden layer of four nodes.

• The sigmoid function is used as the 
activation function for the hidden 
nodes and the output node.



XOR Problem

• The function BackpropXOR, which implements the back-
propagation algorithm using the SGD method, takes the 
network’s weights and training data and returns the adjusted 
weights.

𝑊1,𝑊2 = 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑋𝑂𝑅 𝑊1,𝑊2, 𝑋, 𝐷

𝑊1 is the weight matrix between the input layer and hidden layer.

𝑊2 is the weight matrix between the hidden layer and output layer.

X and D are the input and correct output of the training data, respectively.



• The code takes point from the training 
dataset, calculates the weight update, 
dW, using the delta rule, and adjusts 
the weights.

• The delta (delta1) calculation using the 
back-propagation of the output delta 
as follows：

e1 = W2’ * delta;
delta1 = y1 .* (1 - y1) .* e1;

The calculation of the error, e1, is the implementation 

of Equation 3.6.



• The function Sigmoid, which the BackpropXOR code calls, 
replaced the division with the element-wise division “ ./ ” to 
account for the vector.

• The modified Sigmoid function can operate using vectors as 
shown by the following example：

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 −1, 0, 1 → 0.2689, 0.5000, 0.7311



• Execute the code, and find the 
following values are very close to 
the correct output, D, indicating 
that the neural network has been 
properly trained.

0.0060
0.9888
0.9891
0.0134

⇔ D =

0
1
1
0



Momentum 

• The momentum, m, is a term that is added to the delta rule for 
adjusting the weight.

• The use of the momentum term drives the weight adjustment to 
a certain direction to some extent, rather than producing an 
immediate change.

• It acts similarly to physical momentum, which impedes the 
reaction of the body to the external forces.



• 𝑚− is the previous momentum and β is a positive constant that 
is less than 1.

• The following steps show how the momentum changes over 
time：

∆w = α𝛿𝑥
𝑚 = ∆𝑤 + 𝛽𝑚−

𝑤 ← 𝑤 +𝑚
𝑚− = 𝑚

(Equation 3.8)
∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

(Equation 3.7)

𝑚 0 = 0
𝑚 1 = ∆𝑤 1 + 𝛽𝑚 0 = ∆𝑤 1
𝑚 2 = ∆𝑤 2 + 𝛽𝑚 1 = ∆𝑤 2 + 𝛽∆𝑤 1
𝑚 3 = ∆𝑤 3 + 𝛽𝑚 2 = ∆𝑤 3 + 𝛽 ∆𝑤 2 + 𝛽∆𝑤 1

= ∆𝑤 3 + 𝛽∆𝑤 2 + 𝛽2∆𝑤 1
⋮



• It is noticeable from these steps that the previous weight update, i.e. 
∆w(1), ∆w(2), ∆w(3), etc., is added to each momentum over the 
process.

• Since β is less than 1, the older weight update exerts a lesser 
influence on the momentum.

• Although the influence diminishes over time, the old weight 
updates remain in the momentum.

• Therefore, the weight is not solely affected by a particular weight update 
value.

• Therefore, the learning stability improves.

• In addition, the momentum grows more and more with weight 
updates. As a result, the weight update becomes greater and greater 
as well. Therefore, the learning rate increases.



Avoiding Zig-Zagging with MomentumMarble Rolling Down Hill

Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018



• BackpropMmt.m file implements the 
back-propagation algorithm with the 
momentum. 

• The code initializes the momentums, 
mmt1 and mmt2, as zeros when it 
starts the learning process.

• The weight adjustment formula is 
modified to reflect the momentum as：

dW1 = alpha * delta1 * x’;

Mmt1 = dW1 + beta * mmt1;

W1 = W1 + mmt1;



• The TestBackpropMmt.m file tests 
the function BackpropMmt.

• The performance of the training is 
verified by comparing the output to 
the correct output of the training 
data.



• There are two primary types of cost functions 

𝐿 =෍

𝑖=1

𝑀
1

2
𝑑𝑖 − 𝑦𝑖

2 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.9

𝐿 =෍

𝑖=1

𝑀

−𝑑𝑖 ln 𝑦𝑖 − 1 − 𝑑𝑖 ln 1 − 𝑦𝑖 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.10

𝑦𝑖 is the output from the output node.

𝑑𝑖 is the correct output from the training data.

M is the number of output nodes.

Cost Function and Learning Rule



• Consider the following cost function which is called the cross 
entropy .

• Equation 3.10 is the concatenation of the following two equations：

• Due to the definition of a logarithm, the output, y, should be within 
0 and 1. Therefore, the cross entropy cost function often teams up 
with sigmoid and softmax activation functions in the neural network.

𝐸 = −𝑑 ln 𝑦 − 1 − 𝑑 ln 1 − 𝑦

𝐸 = ቊ
− ln 𝑦 𝑑 = 1

− ln 1 − 𝑦 𝑑 = 0

Equation 3.10



• This cost function is proportional to the error.

• The cross entropy function is much more sensitive to the error 
than quadratic function.



Multi-layer Perceptron

• Forward pass

𝑣𝑗
1
= σ𝑖=1

2 𝑤𝑗𝑖
(1)

𝑥𝑖

𝑦𝑗
(1)

= 𝜑 𝑣𝑗
1

𝑣𝑘 = σ𝑗=1
2 𝑤𝑘𝑗

(2)
𝑦𝑗
(1)

𝑦𝑘 = 𝜑 𝑣𝑘
𝐿 =

1

2
σ𝑘=1
2 (−𝑑𝑘 ln 𝑦𝑘 − 1 − 𝑑𝑘 ln 1 − 𝑦𝑘 )

• Backward pass

𝑦𝑘 ≡
𝜕𝐿

𝜕𝑦𝑘
= −(𝑑𝑘 − 𝑦𝑘)/𝑦𝑘(1 − 𝑦𝑘)

𝑣𝑘 ≡
𝜕𝐿

𝜕𝑣𝑘
=

𝜕𝐿

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕𝑣𝑘
= −(𝑑𝑘 − 𝑦𝑘) ≡ −𝑒𝑘≡ −𝛿𝑘

𝑤𝑘𝑗
(2)

≡
𝜕𝐿

𝜕𝑤
𝑘𝑗
(2) =

𝜕𝐿

𝜕𝑣𝑘

𝜕𝑣𝑘

𝜕𝑤
𝑘𝑗
(2) = −𝛿𝑘𝑦𝑗

(1)

𝑦𝑗
1
≡

𝜕𝐿

𝜕𝑦𝑗
1 =

𝜕𝐿

𝜕𝑣1

𝜕𝑣1

𝜕𝑦𝑗
1 +

𝜕𝐿

𝜕𝑣2

𝜕𝑣2

𝜕𝑦𝑗
1

= −(𝛿1𝑤1𝑗
(2)

+ 𝛿2𝑤2𝑗
(2)
) ≡ −𝑒𝑗

(1)

𝑣𝑗
1
≡

𝜕𝐿

𝜕𝑣𝑗
1 =

𝜕𝐿

𝜕𝑦𝑗
1

𝜕𝑦𝑗
1

𝜕𝑣𝑗
1 = −𝑒𝑗

1
𝜑′ 𝑣𝑗

1
≡ −𝛿𝑗

(1)

𝑤𝑗𝑖
(1)

≡
𝜕𝐿

𝜕𝑤
𝑗𝑖
(1) =

𝜕𝐿

𝜕𝑣𝑗
1

𝜕𝑣𝑗
1

𝜕𝑤
𝑗𝑖
(1) = −𝛿𝑗

(1)
𝑥𝑗



𝜕𝐿

𝜕𝑣𝑖
=

𝜕(
1

2
σ𝑘=1
2 (−𝑑𝑘 ln 𝑦𝑘 − 1−𝑑𝑘 ln 1−𝑦𝑘 ))

𝜕𝑦𝑖

=
𝜕(−𝑑𝑖 ln 𝑦𝑖 − 1−𝑑𝑖 ln 1−𝑦𝑖 )

𝜕𝑦𝑖
= −𝑑𝑖

1

𝑦𝑖
− 1 − 𝑑𝑖

1

1−𝑦𝑖
=

−𝑑𝑖 1−𝑦𝑖 − 1−𝑑𝑖 𝑦𝑖

𝑦𝑖 1−𝑦𝑖

=
−(𝑑𝑖−𝑦𝑖)

𝑦𝑖 1−𝑦𝑖

𝜕𝐿

𝜕𝑣𝑖
=

𝜕(
1

2
σ𝑘=1
2 (−𝑑𝑘 ln 𝑦𝑘 − 1−𝑑𝑘 ln 1−𝑦𝑘 ))

𝜕𝑣𝑖

=
𝜕(−𝑑𝑖 ln 𝑦𝑖 − 1−𝑑𝑖 ln 1−𝑦𝑖 )

𝜕𝑣𝑖

=
𝜕(−𝑑𝑖 ln 𝜑(𝑣𝑖) − 1−𝑑𝑖 ln 1−𝜑(𝑣𝑖) )

𝜕𝑣𝑖

= −𝑑𝑖
1

𝜑(𝑣𝑖)

𝜕𝜑(𝑣𝑖)

𝜕𝑣𝑖
− 1 − 𝑑𝑖

1

1−𝜑(𝑣𝑖)

𝜕𝜑(𝑣𝑖)

𝜕𝑣𝑖

= −𝑑𝑖
1

𝜑 𝑣𝑖
𝜑 𝑣𝑖 1 − 𝜑 𝑣𝑖 + 1 − 𝑑𝑖

1

1−𝜑(𝑣𝑖)
𝜑(𝑣𝑖)(1 − 𝜑 𝑣𝑖 )

= −𝑑𝑖 1 − 𝜑 𝑣𝑖 + 1 − 𝑑𝑖 𝜑 𝑣𝑖
= −𝑑𝑖 + 𝜑 𝑣𝑖
= −(𝑑𝑖−𝑦𝑖)



The procedure in training the neural network with the sigmoid 
activation function at the output node using the cross entropy

(1)Initialize the neural network’s weights with adequate values.

(2)Enter the input of the training data { input, correct output } to the 

neural network and obtain the output. Calculate the error, and 

calculate the delta, δ, of the output nodes.

𝑒 = 𝑑 − 𝑦
𝛿 = 𝑒

(3) Propagate the delta of the output node backward and calculate the 

delta of the subsequent hidden nodes.

𝑒 𝑘 = 𝑊𝑇𝛿

𝛿 𝑘 = 𝜑′ 𝑣 𝑘 𝑒 𝑘



(4) Repeat Step 3 until it reaches the hidden layer that is next to the input layer.

(5) Adjust the neural network’s weights using the following learning rule：

∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

(6) Repeat Steps 2-5 for every training data point.

(7) Repeat Steps 2-6 until the network has been adequately trained.



• The output and hidden layers employ different formulas of the delta
when the learning rule is based on the cross entropy and the sigmoid 
function.



Regularization

• Overfitting is a challenging problem that every technique of 
Machine Learning faces.

• One of the primary approaches used to overcome overfitting is 
making the model as simple as possible using 
regularization.

• In a mathematical sense, the essence of regularization is 
adding the sum of the weights to the cost function.



𝐽 =
1

2
෍

𝑖=1

𝑀

𝑑𝑖 − 𝑦𝑖
2 + 𝜆

1

2
𝑤 2

𝐽 =෍

𝑖=1

𝑀

−𝑑𝑖 ln 𝑦𝑖 − 1 − 𝑑𝑖 ln 1 − 𝑦𝑖 + 𝜆
1

2
𝑤 2

λ is the coefficient that determines how much of the connection weight is reflected on the cost function.

This cost function maintains a large value when one of the output errors and the weight

remain large. Therefore, solely making the output error zero will not suffice in reducing 

the cost function.

In order to drop the value of the cost function, both the error and weight should be 

controlled to be as small as possible.

However, if a weight becomes small enough, the associated nodes will be practically 

disconnected. As a result, unnecessary connections are eliminated, and the neural 

network becomes simpler.



Example: Cross Entropy Function

• The sigmoid function is employed for the activation function of 
the hidden nodes and output node.

The training data (XOR data) 

contains the same four elements.

{0, 0, 1, 0}

{0, 1, 1, 1}

{1, 0, 1, 1}

{1, 1, 1, 0}



Cross Entropy Function

The BackpropCE function trains the XOR data using 

the cross entropy function.

It takes the neural network’s weights and training 

data and returns the adjusted weights.

W1 and W2 are the weight matrices for the input-hidden 

layers and hidden-output layers, respectively.

X and D are the input and correct output matrices of the 

data, respectively.

𝑊1,𝑊2 = 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝐶𝐸 𝑊1,𝑊2, 𝑋, 𝐷



• This program calls the 
BackpropCE function and trains 
the neural network 10,000 times.

• The trained neural network yields 
the output for the training data 
input, and the result is 

0.00003
0.9999
0.9998
0.00036

⇔ D =

0
1
1
0



Comparison of Cost Functions
The following listing shows the CEvsSSE.m file 

that compares the mean errors of the two 

functions.



• This program calls the BackpropCE and the BackpropXOR functions and trains 
the neural networks 1,000 times each.

• The squared sum of the output error (es1 and es2) is calculated at every epoch 
for each neural network, and their average (E1 and E2) is calculated.

• The cross entropy-driven training reduces the training error at a much faster rate.



Homework

1. yc =? yD =? yF =?

2. Compute mean square error E =
1

2
(1 − yF)

2, 1 is the desired output

3. Using the training sample 𝑥A = 0.23, 𝑥B = 0.82 and the backward propagation 

algorithm for one iteration to compute 𝑤𝑖 ← 𝑤𝑖 + 𝛼
𝜕𝐸

𝜕𝑤𝑖
, 𝛼 = 0.7, 𝑖 = 1,2,3,4,5,6

4. Compute the forward pass using 𝑥A = 0.23, 𝑥B = 0.82 again and show that the mean 
square error has been reduced. 


