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Figure 4-2. Training data binary classification.

Binary Classification

> 0.5 → 1
< 0.5 → 0

𝐶𝑙𝑎𝑠𝑠 △ → 1
𝐶𝑙𝑎𝑠𝑠 ● → 0



Learning process of the binary classification：

(1) One node for the output layer. The sigmoid function is used for the activation 

function.

(2) Switch the class titles of the training data into numbers using the maximum and 

minimum values of the sigmoid function.

𝐶𝑙𝑎𝑠𝑠 △ → 1
𝐶𝑙𝑎𝑠𝑠 ● → 0

(3) Initialize the weights of the neural network with adequate values.

(4) Enter the training data { input, correct output } into the neural network. 

Calculate the error and determine the delta δ  of the output nodes.

𝑒 = 𝑑 − 𝑦
𝛿 = 𝑒



(5) Propagate the output delta backwards and calculate the delta of the 

subsequent hidden nodes.

𝑒 𝑘 = 𝑊𝑇𝛿

𝛿 𝑘 = 𝜑′ 𝑣 𝑘 𝑒 𝑘

(6) Repeat Step 5 until it reaches the hidden layer on the immediate right of the 

input layer. 

(7) Adjust the weights of the neural network using this learning rule：

∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

(8) Repeat Steps 4-7 for all training data points.

(9) Repeat Steps 4-8 until the neural network has been trained properly.



Multiclass Classification

5, 7, 𝐶𝑙𝑎𝑠𝑠 1

9, 8, 𝐶𝑙𝑎𝑠𝑠 3

2, 4, 𝐶𝑙𝑎𝑠𝑠 2

⋯

6, 5, 𝐶𝑙𝑎𝑠𝑠 3

𝐶𝑙𝑎𝑠𝑠 1 → 1, 0, 0
𝐶𝑙𝑎𝑠𝑠 2 → 0, 1, 0
𝐶𝑙𝑎𝑠𝑠 3 → 0, 0, 1

5, 7, 𝟏, 𝟎, 𝟎

9, 8, 𝟎, 𝟎, 𝟏

2, 4, 𝟎, 𝟏, 𝟎

⋯

6, 5, 𝟎, 𝟎, 𝟏
one-hot encoding or 
1-of-N encoding



• In general, multiclass classifiers employ the softmax function as the 
activation function of the output node.

• The output from the i-th output node of the softmax function is：

𝑦𝑖 = 𝜑 𝑣𝑖 =
𝑒𝑣𝑖

𝑒𝑣1 + 𝑒𝑣2 + 𝑒𝑣3 +⋯+ 𝑒𝑣𝑀
=

𝑒𝑣𝑖

σ𝑘=1
𝑀 𝑒𝑣𝑘

• Example:

𝑣 =
2
1
0.1

⇒ 𝜑 𝑣 =

𝑒2

𝑒2 + 𝑒1 + 𝑒0.1

𝑒1

𝑒2 + 𝑒1 + 𝑒0.1

𝑒0.1

𝑒2 + 𝑒1 + 𝑒0.1

=
0.6590
0.2424
0.0986

𝑣𝑖 is the weighted sum of the i-th output node.

M is the number of output nodes.
𝜑 𝑣1 + 𝜑 𝑣2 + 𝜑 𝑣3 +⋯+ 𝜑 𝑣𝑀 = 1



The training process of the multiclass classification neural network is：

(1)Construct the number of output nodes to be the number of classes. The 

softmax function is used as the activation function.

(2)Switch the names of the classes into numeric vectors via the one-hot encoding 

𝐶𝑙𝑎𝑠𝑠 1 → 1, 0, 0
𝐶𝑙𝑎𝑠𝑠 2 → 0, 1, 0
𝐶𝑙𝑎𝑠𝑠 3 → 0, 0, 1

(3) Initialize the weights of the neural network with adequate values.

(4) Enter the training data { input, correct output } into the neural network.   

Calculate the error and determine the delta δ.

𝑒 = 𝑑 − 𝑦
𝛿 = 𝑒



(5) Propagate the output delta backwards and calculate the delta of the 

subsequent hidden nodes.

𝑒 𝑘 = 𝑊𝑇𝛿

𝛿 𝑘 = 𝜑′ 𝑣 𝑘 𝑒 𝑘

(6) Repeat Step 5 until it reaches the hidden layer on the immediate right of 

the input layer.

(7) Adjust the weights of the neural network using this learning rule：

∆𝑤𝑖𝑗 = 𝛼𝛿𝑖𝑥𝑗
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

(8) Repeat Steps 4-7 for all the training data points.

(9) Repeat Steps 4-8 until the neural network has been trained properly.



Example: Multiclass Classification

• The input images are five-by-five pixel squares, which display 
five numbers from 1 to 5.



• As each image is set on a matrix, we set 25 input nodes. In addition, as we 
have five digits to classify, the network contains five output nodes. 

• The softmax function is used as the activation function of the output node. 
The hidden layer has 50 nodes and the sigmoid function is used as the 
activation function.



• The function MultiClass implements the learning rule of multiclass 
classification using the SGD method. It takes the input arguments of 
the weights and training data and returns the trained weights.

𝑊1,𝑊2 = 𝑀𝑢𝑙𝑡𝑖𝐶𝑙𝑎𝑠𝑠 𝑊1,𝑊2, 𝑋, 𝐷

W1 and W2 are the weight matrices of the input-hidden and hidden-output 

layers, respectively.

X and D are the input and correct output of the training data, respectively.



• MultiClass.m follows the same procedure as
in Chapter 3, which applies the delta rule to
the training data, calculates the weight
updates, dW1 and dW2, and adjusts the
neural network’s weights.

• As this neural network is compatible with
only the vector format inputs, the two-
dimensional matrix should be
transformed into a 25x1 vector.

• The previous back-propagation algorithm 
applies to the hidden layer.

𝑒1 = 𝑊2′ ∗ 𝑑𝑒𝑙𝑡𝑎;
𝑑𝑒𝑙𝑡𝑎1 = 𝑦1 .∗ 1 − 𝑦1 .∗ 𝑒1;

𝑋 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 𝑋 ：,：, 𝑘 , 25, 1 ;



• This program calls MultiClass and trains the neural network 10,000 times. 
Once the training process has been finished, the program enters the 
training data into the neural network and displays the output.



• Consider the slightly contaminated images and watch how the 
neural network responds to them.



• This program starts with the execution of the TestMultiClass
command and trains the neural network. This process yields the 
weight matrices W1 and W2.



The neural network should be trained to have more variety in 
the training data in order to improve its performance.



Deep Learning

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 5.



• The deep neural network is the multi-layer neural network 
that contains two or more hidden layers.

• Multi-layer neural network took 30 years to solve the problems 
of learning rule of the single-layer neural network, which was 
eventually solved by the back-propagation algorithm.

• The backpropagation training with the additional hidden 
layers often resulted in poorer performance. Deep Learning 
provided a solution to this problem.



Improvement of the Deep Neural Network

• The neural network with deeper layers yielded poorer 
performance was that the network was not properly trained.

• The backpropagation algorithm experiences three difficulties in 
training deep neural network：

• Vanishing gradient
• Overfitting
• Computational load



Vanishing Gradient
• The vanishing gradient in the training process occurs when the output 

error is more likely to fail to reach the farther nodes.

• As the error hardly reaches the first hidden layer, the weight cannot 
be adjusted.



Vanishing Gradient： ReLU

• A solution to the vanishing gradient is using the Rectified Linear 
Unit (ReLU) function as the activation function.

𝜑 𝑥 = ቊ
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

= 𝑚𝑎𝑥 0, 𝑥

• The sigmoid function limits the node’s outputs to the unity, the 
ReLU function does not exert such limits and better transmit the 
error than the sigmoid function.

• We also need the derivative of the ReLU function. 

𝜑′ 𝑥 = ቊ
1, 𝑥 > 0
0, 𝑥 ≤ 0



Overfitting

• The reason that the deep neural network is especially 
vulnerable to overfitting is that the model becomes more 
complicated as it includes more hidden layers, and hence 
more weight.



Overfitting：Dropout

• Train only some of the randomly 
selected nodes 

• 50% and 25% for hidden and input 
layers are dropped out

• Continuously alters the nodes and 
weights in the training process

• Use massive training data is very 
helpful to reduce potential bias



Computational Load

• The number of weights increases geometrically with the number 
of hidden layers, thus requiring more training data. This 
ultimately requires more calculations to be made.

• This trouble has been relieved to a considerable extent by the 
introduction of high-performance hardware, such as GPU, and 
algorithms, such as batch normalization.



Example: ReLU and Dropout

• The network has 25 input nodes

• Five output nodes for the five 
classes. 

• Output nodes employ the 
softmax activation function.

• Three hidden layers, each 
hidden layer contains 20 nodes. 



ReLU Function

• DeepReLU trains the deep neural network using the back-
propagation algorithm. It takes the weights of the network and 
training data and returns the trained weights.

𝑊1,𝑊2,𝑊3,𝑊4 = 𝐷𝑒𝑒𝑝𝑅𝑒𝐿𝑈 𝑊1,𝑊2,𝑊3,𝑊4, 𝑋, 𝐷

W1, W2, W3, and W4 are weight matrices of input - hidden1, 

hidden1 - hidden2, hidden2 - hidden3, and hidden3 - output layers.

X and D are input and correct output matrices of the training data.



• The process is identical to the previous training codes but the 
hidden nodes employ the ReLU in place of sigmoid.



• Consider the back-propagation algorithm portion, which adjusts the 
weights using the back-propagation algorithm.

• This process starts from the delta of the output node, calculates the 
error of the hidden node, and uses it for the next error. It repeats the 
same steps through delta3, delta2, and delta1.



• The definition of the derivative of the ReLU function：

𝜑′ 𝑥 = ቊ
1, 𝑥 > 0
0, 𝑥 ≤ 0

• In the calculation of the delta of the third hidden layer, delta3, 
the derivative of the ReLU function is coded ：

𝑣3 > 0 = ቊ
1, 𝑥 > 0
0, 𝑥 ≤ 0



• Following is TestDeepReLU.m file, which tests the DeepReLU
function. This program calls the DeepReLU function and trains 
the network 10,000 times and displays the output.



Dropout

• The function DeepDropout trains the example using the back-
propagation algorithm. It takes the neural network’s weights and 
training data and returns the trained weights.

𝑊1,𝑊2,𝑊3,𝑊4 = 𝐷𝑒𝑒𝑝𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑊1,𝑊2,𝑊3,𝑊4, 𝑋, 𝐷

• This code imports the training data, calculates the weight 
updates (dW1, dW2, dW3, and dW4) using the delta rule, and 
adjusts the weight of the neural network.





• It differs from the previous ones in that once the output is 
calculated from the sigmoid activation function of the hidden node, 
the Dropout function modifies the final output of the node. 

• For example, the output of the first hidden layer is calculated as：

𝑦1 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑣1 ;
𝑦1 = 𝑦1 .∗ 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑦1, 0.2 ;

• Executing these lines switches the outputs from 20% of the first 
hidden nodes to 0; it drops out 20% of the first hidden nodes.



• Example：

𝑦1 = 𝑟𝑎𝑛𝑑 6, 1
𝑦𝑚 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑦1, 0.5
𝑦1 = 𝑦1 .∗ 𝑦𝑚

• ym contains zeros for as many elements as the ratio and 1 / ( 1 -

ratio) for the other elements to compensate for the loss of output 

due to the dropped elements



• This code is almost identical to the other test codes. The only 
difference is that it calls the DeepDropout function when it 
calculates the output of the trained network.



Convolutional Neural 
Network (ConvNet)

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 6.



• Before ConvNet, the feature extractor has been designed by experts of 
specific areas, and was independent of Machine Learning.



• ConvNet includes the feature extractor in the training process rather 
than designing it manually.

• Feature extractor of ConvNet is composed of special kinds of neural 
networks, of which the weights are determined via the training process.





• Circled * mark 𝑜𝑟 ⊗ denotes the convolution operation, and the 
𝜑 mark is the activation function.

• The square grayscale icons between these operators indicate the 
convolution filters.



• Kernel size : filter size(F)

• Stride : sliding length of filter per step(S)

• Padding : control the output feature maps’ size
• Same :

output feature width = ceil (W / S)
W : input feature width 

S : stride
• Valid : 

output feature width = ceil ((W - F+1) / S)
W : input feature width 
S : stride

Introduction : CNN – Convolutional Layer

http://deeplearning.n
et

Zero paddingFilter





Introduction : CNN – Convolutional Layer

Different Convolutional Kernels



Introduction : CNN – Pooling Layer

• Kernel size : pooling kernel 
size

• Stride : usually equal to 
kernel size

• Padding : control the output 
feature maps’ size 

http://cs231n.github.io/convolutional-
networks/

Max-pooling

http://yhhuang1966.blogspot.com/2018/04/keras-
cnn.html

Average-pooling



• The pooling process is a type of convolution operation. The 
difference from the convolution layer is that the convolution filter 
is stationary, and the convolution areas do not overlap.

• The pooling layer compensates for eccentric and tilted objects 
to some extent. For example, the pooling layer can improve the 
recognition of a cat, which may be off-center in the input image.

• As the pooling process reduces the image size, it is highly 
beneficial for relieving the computational load and preventing 
overfitting.



28-by-28 pixel black-and-white images from MNIST database

MNISTdatabase:70,000 images of handwritten numbers. In general, 60,000 images are used for training,

and the remaining 10,000 images are used for the validation test

Phil Kim - MatLab Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence 2017, Apress



Architecture of convolutional neural network (CNN)

Phil Kim - MatLab Deep Learning with 
Machine Learning, Neural Networks and 
Artificial Intelligence 2017, Apress
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While image passes through the convolution and pooling layers

Phil Kim - MatLab Deep Learning with 
Machine Learning, Neural Networks and 
Artificial Intelligence 2017, Apress

Rectified Linear Units (ReLU)
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• Backward pass:
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𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

⊛
𝑤11 𝑤12
𝑤21 𝑤22

=

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

∗.
𝑤22 𝑤21
𝑤12 𝑤11

=
𝑦11 𝑦12
𝑦21 𝑦22



𝜕𝐿

𝜕𝑤22

𝜕𝐿

𝜕𝑤21

𝜕𝐿

𝜕𝑤12

𝜕𝐿

𝜕𝑤11

=

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

∗.
𝛿11 𝛿12
𝛿21 𝛿22

=

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

⊛
𝛿22 𝛿21
𝛿12 𝛿11

Back-propagation with convolution

Filter kernel

Flip

Feature map

Flip
𝛿𝑖𝑗 ≡

𝜕𝐿

𝜕𝑦𝑖𝑗



Back-propagation with average pooling 
operation

𝑥11 𝑥12
𝑥21 𝑥22

𝑥13 𝑥14
𝑥23 𝑥24

𝑥31 𝑥32
𝑥41 𝑥42

𝑥33 𝑥34
𝑥43 𝑥44

⇒
average 

pooling 

𝑥21 → 𝑦11
(3)

𝑥23 → 𝑦12
(3)

𝑥32 → 𝑦21
(3)

𝑥33 → 𝑦22
(3)

Feature map at layer L Feature map at layer L+1

forward

𝜕𝐿

𝜕𝑦11
(3)

𝜕𝐿

𝜕𝑦12
(3)

𝜕𝐿

𝜕𝑦21
(3)

𝜕𝐿

𝜕𝑦22
(3)

⇐

backward

1

4

𝜕𝐿

𝜕𝑦11
(3)

1

4

𝜕𝐿

𝜕𝑦11
(3)

1

4

𝜕𝐿

𝜕𝑦11
(3)

1

4

𝜕𝐿

𝜕𝑦11
(3)

1

4

𝜕𝐿

𝜕𝑦12
(3)

1

4

𝜕𝐿

𝜕𝑦12
(3)

1

4

𝜕𝐿

𝜕𝑦12
(3)

1

4

𝜕𝐿

𝜕𝑦12
(3)

1

4

𝜕𝐿

𝜕𝑦21
(3)

1

4

𝜕𝐿

𝜕𝑦21
(3)

1

4

𝜕𝐿

𝜕𝑦21
(3)

1

4

𝜕𝐿

𝜕𝑦21
(3)

1

4

𝜕𝐿

𝜕𝑦22
(3)

1

4

𝜕𝐿

𝜕𝑦22
(3)

1

4

𝜕𝐿

𝜕𝑦22
(3)

1

4

𝜕𝐿

𝜕𝑦22
(3)



Back-propagation with max pooling operation

𝑥11 𝑥12
𝑥21 𝑥22

𝑥13 𝑥14
𝑥23 𝑥24

𝑥31 𝑥32
𝑥41 𝑥42

𝑥33 𝑥34
𝑥43 𝑥44

⇒
max pooling 

𝑥21 → 𝑦11
(3)

𝑥23 → 𝑦12
(3)

𝑥32 → 𝑦21
(3)

𝑥33 → 𝑦22
(3)

Feature map at layer L Feature map at layer L+1

forward

𝜕𝐿

𝜕𝑦11
(3)

𝜕𝐿

𝜕𝑦12
(3)

𝜕𝐿

𝜕𝑦21
(3)

𝜕𝐿

𝜕𝑦22
(3)

⇐
backward

0 0
𝜕𝐿

𝜕𝑦11
(3)

0

0 0
𝜕𝐿

𝜕𝑦12
(3)

0

0
𝜕𝐿

𝜕𝑦21
(3)

0 0

𝜕𝐿

𝜕𝑦22
(3)

0

0 0



• MnistConv.m trains the network using the back-propagation algorithm

[W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D)

W1: convolution filter matrix

W5: pooling-hidden layer weight matrix

Wo : hidden- output layer weight matrix

X: training input data

D: correct output



function [W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D)

%

alpha = 0.01;

beta  = 0.95;

momentum1 = zeros(size(W1));

momentum5 = zeros(size(W5));

momentumo = zeros(size(Wo));

N = length(D);

bsize = 100;  

blist = 1:bsize:(N-bsize+1);

% One epoch loop

%

for batch = 1:length(blist)

dW1 = zeros(size(W1));

dW5 = zeros(size(W5));

dWo = zeros(size(Wo));

% Mini-batch loop

%

begin = blist(batch);

for k = begin:begin+bsize-1

% Forward pass = inference

%

x  = X(:, :, k);            % Input,  28*28

y1 = Conv(x, W1);           % W1:9*9*20, y1:20*20*20

y2 = ReLU(y1);              % y2:20*20*20

y3 = Pool(y2);              % Pooling, y3:10*10*20

y4 = reshape(y3, [], 1);    % Flattening, y4:2000*1

v5 = W5*y4;                 % W5:100*2000, v5:100*1

y5 = ReLU(v5);              % y5:100*1

v  = Wo*y5;                 % Wo:10*100, v:10x1

y  = Softmax(v);            % y:10*1

% One-hot encoding

%

d = zeros(10, 1);

d(sub2ind(size(d), D(k), 1)) = 1;

blist = [ 1, 101, 201, 301, ..., 7801, 7901 ]

The number of batches, bsize, is set to be 100. As we have a total 8,000 training data points, the weights are adjusted 80
(=8,000/100) times for every epoch. The variable blist contains the location of the first training data point to be brought into
the minibatch. Starting from this location, the code brings in 100 data points and forms the training data for the minibatch.

MnistConv.m



% Update weights

%

dW1 = dW1 / bsize;

dW5 = dW5 / bsize;

dWo = dWo / bsize;

momentum1 = alpha*dW1 + beta*momentum1;

W1        = W1 + momentum1;

momentum5 = alpha*dW5 + beta*momentum5;

W5        = W5 + momentum5;

momentumo = alpha*dWo + beta*momentumo;

Wo        = Wo + momentumo;  

end

end

% Backpropagation
%

e      = d - y;                  % Output layer 10*1 

delta  = e;                      % 10*1

e5     = Wo' * delta;            % Hidden(ReLU) layer (100*10)*10*1=100*1

delta5 = (y5 > 0) .* e5;         % (100*1).*(100*1)=100*1

e4     = W5' * delta5;         % Pooling layer (2000*100)*100*1=2000*1

e3     = reshape(e4, size(y3)); % 2000*1  10*10*20

e2 = zeros(size(y2));           % 20*20*20     

W3 = ones(size(y2)) / (2*2);    % 20*20*20

for c = 1:20

e2(:, :, c) = kron(e3(:, :, c), ones([2 2])) .* W3(:, :, c); % 20*20*20

end

delta2 = (y2 > 0) .* e2;          % ReLU layer (20*20*20).*(20*20*20)

delta1_x = zeros(size(W1));       % Convolutional layer 9*9*20

for c = 1:20

delta1_x(:, :, c) = conv2(x(:, :), rot90(delta2(:, :, c), 2), 'valid');

end

dW1 = dW1 + delta1_x;    % 9*9*20

dW5 = dW5 + delta5*y4';  % delta5*y4' :(100*1)*(1*2000)=100*2000

dWo = dWo + delta *y5';  % delta *y5‘ :(10*1)*(1*100)=10*100

end

MnistConv.m (continued)



• The following is the back-propagation from the output layer to 
the subsequent layer to the pooling layer.

𝜕𝐿

𝜕𝑦𝑘
= −(𝑑𝑘 − 𝑦𝑘)/𝑦𝑘(1 − 𝑦𝑘)

𝜕𝐿

𝜕𝑣𝑘
=

𝜕𝐿

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕𝑣𝑘
= −(𝑑𝑘 − 𝑦𝑘) ≡ −𝑒𝑘 ≡ −𝛿𝑘

𝜕𝐿

𝜕𝑤
𝑘𝑗
(𝑜) =

𝜕𝐿

𝜕𝑣𝑘

𝜕𝑣𝑘

𝜕𝑤
𝑘𝑗
(𝑜) = −𝛿𝑘𝑦𝑗

(5)

𝜕𝐿

𝜕𝑦𝑗
5 =

𝜕𝐿

𝜕𝑣1

𝜕𝑣1

𝜕𝑦𝑗
5 +

𝜕𝐿

𝜕𝑣2

𝜕𝑣2

𝜕𝑦𝑗
5

= −(𝛿1𝑤1𝑗
(𝑜)

+ 𝛿2𝑤2𝑗
(𝑜)
) ≡ −𝑒𝑗

(5)

𝜕𝐿

𝜕𝑣𝑗
5 =

𝜕𝐿

𝜕𝑦𝑗
5

𝜕𝑦𝑗
5

𝜕𝑣𝑗
5 = −𝑒𝑗

5
𝜑′ 𝑣𝑗

5
= −𝑒𝑗

5
𝑦𝑘

5
> 0 .≡ −𝛿𝑗

(5)

𝜕𝐿

𝜕𝑤
𝑗𝑖
(5) =

𝜕𝐿

𝜕𝑣𝑗
5

𝜕𝑣𝑗
5

𝜕𝑤
𝑗𝑖
(5) = −𝛿𝑗

(5)
𝑦𝑗
(3)

𝜕𝐿

𝜕𝑦
𝑗
(3) =

𝜕𝐿

𝜕𝑣1
(5)

𝜕𝑣1
(5)

𝜕𝑦
𝑗
(3) +

𝜕𝐿

𝜕𝑣2
(5)

𝜕𝑣2
(5)

𝜕𝑦
𝑗
(3)

= −(𝛿1
(5)
𝑤1𝑗
(5)

+ 𝛿2
(5)
𝑤2𝑗
(5)
) ≡ −𝑒𝑗

(4)



• Two more layers to go: the pooling and convolution layers. The 
following shows the back-propagation that passes through the 
pooling layer-ReLU-convolution layer.

𝜕𝐿

𝜕𝑦
𝑖𝑗
(2) =

𝜕𝐿

𝜕𝑦
𝑗
(3)

𝜕𝑦𝑗
(3)

𝜕𝑦
𝑖𝑗
(2) = −𝑒𝑗

4 1

2

𝜕𝐿

𝜕𝑦
𝑖𝑗
(1) =

𝜕𝐿

𝜕𝑦
𝑖𝑗
(2)

𝜕𝑦𝑖𝑗
(2)

𝜕𝑦
𝑖𝑗
(1) = −

1

2
𝑒𝑗
4
𝜑′ 𝑦𝑖𝑗

1
≡ −𝛿𝑖𝑗

(2)

𝜕𝐿

𝜕𝑤
𝑖𝑗
(1) = σ𝑗=1

2 σ𝑖=1
2 𝜕𝐿

𝜕𝑦
𝑖𝑗
(1)

𝜕𝑦𝑖𝑗
(1)

𝜕𝑤
𝑖𝑗
(1)

= −σ𝑛=1
2 σ𝑚=1

2 𝛿𝑚𝑛
(2)
𝑥𝑖−1+𝑚,𝑗−1+𝑛



• MnistConv.m calls Conv.m, which takes the input image and the 
convolution filter matrix and returns the feature maps.



• MnistConv.m also calls Pool.m, which takes the feature map 
and returns the image after the 2x2 mean pooling process.



• This code calls the two-dimensional convolution function, conv2, 
just as the function Conv does. This is because the pooling 
process is a type of a convolution operation.

• The mean pooling of this example is implemented using the 
convolution operation with the following filter:

𝑊 =

1

4

1

4
1

4

1

4

• The filter of the pooling layer is predefined, while that of the 
convolution layer is determined through training.



TestMnistConv.m

convert the 10x1 output into a digit 
to compare with the correct output

2,000 test data points 

accuracy 94.65%



PlotFeatures.m





Convolutional Neural Network, CNN

https://www.mathworks.com/

Convolutional Layers

Pooling Layers

Fully-Connected Layers

Calculate output  

error with label

Forward propagation

Backpropagation

Key  Component of CNN

Output Loss



LeCun et al. 1998
Introduction : CNN – LeNet, 1998

http://yann.lecun.com/exdb/lenet/

MNIST



Introduction : CNN – AlexNet, 2012

• Main idea
• Activation function

• ReLU

• Dropout

• Data Augmentation

• Patch

• RGB PCA

Rectified Linear Units (ReLU)
Dropout

https://www.disneyresearch.com/

Patch AlexNet Architecture :



Introduction : CNN – VGG Net, 2014 

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

arXiv:1409.1556v6 [cs.CV] 10 Apr 2015

VGG-16 • Small convolutional kernel

is better (3x3) 
• Deeper is better



Deep Learning : InceptionV3 - GoogLeNet

https://cloud.google.com/tpu/docs/inception-v3-advanced

arXiv:1512.00567v1 [cs.CV] 2 Dec 2015



Introduction : CNN – ResNet, 2015

arXiv:1512.03385v1 [cs.CV] 10 Dec 2015



71

Deep Learning Model : FCN

Semantic Segmentation: 

自動駕駛之道路、車輛、
行人、號誌識別等

Jonathan Long ,Evan Shelhamer ,Trevor Darrell 

“Fully Convolutional Networks for Semantic Segmentation.”

• Exclude fully connected layers 

(only used in classification)

• Convolution Transpose: for up-sampling

• Skip and Summation: fusion the predictions with 

the same size feature maps, retraining high-level 

semantic information.



72

Deep Learning Model : U-Net

• Modified from FCN.

• The state-of-art on medical images 

binary segmentation.

• The successive convolution block to 

obtain the more precise output.

• Concatenate the same size feature maps 

from encode part to decode part.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

“U-Net: Convolutional Networks for Biomedical Image Segmentation”



73http://www.iab-rubric.org/resources/molf.html


