Neural Network and
Classification

$E R LT

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 4.



Binary Classification

@
A A A AL
© 0 A
o A AN
A A
..A A A
A A
A
0o 0 & A&
@ 02 A A9 ,
@) .A.. A
O O A @

Figure 4-1. Binary classification problem
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Figure 4-2. Training data binary classification.
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Learning process of the binary classification :

(1) One node for the output layer. The sigmoid function is used for the activation
function.

(2) Switch the class titles of the training data into numbers using the maximum and
minimum values of the sigmoid function.
Class /\ =1
Class @ - 0

(3) Initialize the weights of the neural network with adequate values.

(4) Enter the training data { input, correct output } into the neural network.
Calculate the error and determine the delta & of the output nodes.
e=d—y
0=¢e



(5) Propagate the output delta backwards and calculate the delta of the
subsequent hidden nodes.

e® =wTs
509 = g (p(k)) (0

(6) Repeat Step 5 until it reaches the hidden layer on the immediate right of the
iInput layer.

(7) Adjust the weights of the neural network using this learning rule :

AWij = a6in
Wij « Wij + AWU

(8) Repeat Steps 4-7 for all training data points.

(9) Repeat Steps 4-8 until the neural network has been trained properly.



Multiclass Classification
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{5,7,Class 1}

{9, 8, Class 3}

{2,4,Class 2}

{6,5,Class 3}

}

{5,7,1,0,0}

{9,8,0,0,1}

{2,4,0,1,0}

{6,5,0,0,1}

1,0,0
0,1,0
0,0,1

Class 1 -
Class 2 -
Class 3 —

one-hot encoding or
1-of-N encoding



* In general, multiclass classifiers employ the softmax function as the
activation function of the output node.

* The output from the I-th output node of the softmax function is :
evi evi
yl — (p(vl) — evl _|_ evz _|_ ev3 _|_ cee _I_ evM = Iszl evk
v; Is the weighted sum of the i-th output node.
M is the number of output nodes.

o(w1) + () + e(v3) + -+ p(vy) =1

« Example: : 5

2 ol 0.6590
v=[1] = @)= = 10.2424

0.1 0.0986




The training process of the multiclass classification neural network is :

(1)Construct the number of output nodes to be the number of classes. The
softmax function is used as the activation function.

(2)Switch the names of the classes into numeric vectors via the one-hot encoding
Class1 - [1,0,0]

Class 2 — [0,1,0]
Class 3 — [0,0,1]

(3) Initialize the weights of the neural network with adequate values.

(4) Enter the training data { input, correct output } into the neural network.
Calculate the error and determine the delta 6.
e=d—y
O0=¢e



(5) Propagate the output delta backwards and calculate the delta of the
subsequent hidden nodes.

e =WwTs
50 = ¢! (pk))®)

(6) Repeat Step 5 until it reaches the hidden layer on the immediate right of
the input layer.

(7) Adjust the weights of the neural network using this learning rule :

AWij = a5in
Wij « Wij + AWU

(8) Repeat Steps 4-7 for all the training data points.

(9) Repeat Steps 4-8 until the neural network has been trained properly.



Example: Multiclass Classification

* The input images are five-by-five pixel squares, which display
five numbers from 1 to 5.
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 As each image Is set on a matrix, we set 25 input nodes. In addition, as we
have five digits to classify, the network contains five output nodes.

* The softmax function Is used as the activation function of the output node.
The hidden layer has 50 nodes and the sigmoid function is used as the
activation function.
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he function implements the learning rule of multiclass
assification using the SGD method. It takes the input arguments of

the weights and training data and returns the trained weights.

IW1,W2] = MultiClass(W1,W2,X,D)

W1 and W2 are the weight matrices of the input-hidden and hidden-output
layers, respectively.
X and D are the input and correct output of the training data, respectively.




» MultiClass.m follows the same procedure as
In Chapter 3, which applies the delta rule to
the training data, calculates the weight
updates, dW1l and dW2, and adjusts the
neural network’s weights.

* As this neural network Is compatible with
only the vector format inputs, the

X =reshape(X(:, :,k),25,1);

« The previous back-propagation algorithm
applies to the hidden layer.

el = W2' « delta;
deltal = y1 .x (1 —y1) .xel;

function [W1, W2] = MaltiClass(Wl, W2, X, In
alpha = 0.9;

N=5;

for k = 1:N
¥ = reshape(XE(-, -, k), 25, 1)
d =Dk, :1';

vl = Wl*x:
vl = Blgmold({~1);
v o= W%
v = softmaxiv);

= =d - ¥;
delta = e;
el = W'*delta;

deltal = w1.%¥(1-wl). *el;

dW1l = alpha*deltal*x';
o= Wl + durl;

dW2 = alpha*delta*wl"';
w2 o= w2 o+ dW;
end
end




* This program calls MultiClass and trains the neural network 10,000 times.
Once the training process has been finished, the program enters the
training data into the neural network and displays the output.
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clear all

mg(3);

X = zeros(SH, 5, 5);
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1

D=[10000
0100 0;
oo100;
ooo10;
gooolg;

01

11

11

1
ooanoio;
0;
1
I

11

11

1
1
1
1
1

1 1;

1

1

Wl = 2*rand(50, 253 - 1;
w2 = 2*rand{ 5, 500 - 1;

I
0;
0;
1
I

1;

1;

for epoch = 1:10000 % traln
[W1, W21 = Malti1Class(Wl, W2 X, D;
end

N=5; % Inference
for k= 1:H

¥ = reshape(iE(:, -, ki, 25, 13;

vl = Wi*x;

vl = Blgmoldi{w]);

v o= W%yl

v = moftmaxiv)
end




« Consider the slightly contaminated images and watch how the
neural network responds to them.




* This program starts with the execution of the TestMultiClass
command and trains the neural network. This process yields the
weight matrices W1 and W2.

clear all
., :,dr=101110;
Tes tMultiClass; % Wi, w2 01000
i = zeros(S, 5, 53; 011140;
0001 0;
o, :. y=[00011080; o11107;
oo110;
010l Mo, s, 5y =[01111;
I
I 01110
Wi, :, 2y =[11110; Ik
0000 1; 111107;
o11110;
1000 1: N=5; % Inference
11111 7; for k= 1:N
r = reshapel(E(:, -, ki, 25, 1);
W, . y=[11110; vl = Wi*y:
ooootg w1 = 3lgmold{w1);
000, v
’ = Boft
111107 W of tmax) )
end




0.0128
0.0022 1 0.0146 |
0.0017 0.1529
0.9666 0.3208
0.0168 0.0405
. 0.4712
0.0000 l ] - -
I |
0.9936 I !
0.0062 I [
| [
0.0001
I |
: 0.0000 I I [ 0.0006 |
| [ 0.0001 | 0.0065
0.0233 ) | 00110
0.0001 | 0.9818
0.0003 . o
- : The neural network should be trained to have more variety in

the training data in order to improve its performance.



Deep Learning

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 5.



* The deep neural network is the multi-layer neural network
that contains two or more hidden layers.

« Multi-layer neural network took 30 years to solve the problems
of learning rule of the single-layer neural network, which was
eventually solved by the back-propagation algorithm.

* The backpropagation training with the additional hidden
layers often resulted in poorer performance. Deep Learning
provided a solution to this problem.



Improvement of the Deep Neural Network

* The neural network with deeper layers yielded poorer
performance was that the network was not properly trained.

* The backpropagation algorithm experiences three difficulties in
training deep neural network :

* Vanishing gradient
* Overfitting
* Computational load [ Lcaring Rul J

Training Data ‘

Input Data ‘- Deep Neural Network | I Output




Vanishing Gradient

* The vanishing gradient in the training process occurs when the output
error is more likely to fail to reach the farther nodes.

* As the error hardly reaches the first hidden layer, the weight cannot
be adjusted.

Unchanged Updated



Vanishing Gradient : RelLU

* A solution to the vanishing gradient is using the Rectified Linear
nit ( ) function as the activation function.

x, x>0 _
(p(X) — {O, X S O — mClX(O,X)

* The sigmoid function limits the node’s outputs to the unity, the
RelLU function does not exert such limits and better transmit the
error than the sigmoid function.

* \We also need the derivative of the RelLU function.
1, x>0

#(x) = {o, x <0



Overfitting

* The reason that the deep neural network is especially
vulnerable to overfitting is that the model becomes
, and hence
more weight.



Overfitting : Dropout

* Train only some of the randomly
selected nodes

* 50% and 25% for hidden and input
layers are dropped out

» Continuously alters the nodes and
weights in the training process

» Use massive training data is very
helpful to reduce potential bias




Computational Load

* The number of weights increases geometrically with the number
of hidden layers, thus requiring more training data. This
ultimately requires more calculations to be made.

 This trouble has been relieved to a considerable extent by the
iIntroduction of high-performance hardware, such as GPU, and
algorithms, such as batch normalization.



Example: ReLU and Dropout

* The network has 25 input nodes

 Five output nodes for the five
classes.

« Output nodes employ the
softmax activation function.

* Three hidden layers, each
hidden layer contains 20 nodes.

W,

W,

[ 1T



RelLU Function

trains the deep neural network using the back-
propagation algorithm. It takes the weights of the network and
training data and returns the trained weights.

(W1, W2,W3,W4] = DeepReLU(W1,W2,W3,W4,X,D)

W1, , , and are weight matrices of input - hiddenl,
, and layers.

X and D are input and correct output matrices of the training data.




* The process is identical to the previous training codes but the

hidden nodes employ the

function v = Relli x)
v = max(l, x);
erd

In place of sigmoid.

function [W1, W2, W2, W41 = DeepRellI{W1, W2, W2, W4, X I
alpha = 0.01;

N = 5;

for k = 1:N
x = reshapeddEi:, -, k), 25, 13;
vl = Wl*x;
vl = Eelll{+l);
vd = Wi¥s];
w2 = Relll+2);
w3 o= Wik -
w3 = Rellliv3);
voo= Wd¥ed-

= Boftmaxiv);

d = Dik, 2}
= =d - ¥
delta = e;

el

deltal

=

del ta?

el

deltal

d W
4

dWr3
e

dWr

dwrl
w1
end
end

W4 ' *del ta;
fw3 = 01, %e3;

Wa'*deltad;
(w2 = 01, %e2;

W' *deltaZ;
fwl = 0).*%el;

alpha*del ta*v3';
W+ AW ;

alpha*delta3*2';
w3+ dW3;

alpha*delta2*vl';
Wi o+ dWE;

alpha*deltal*x';
Wl + dWl;




« Consider the back-propagation algorithm portion, which adjusts the
weights using the back-propagation algorithm.

* This process starts from the delta of the output node, calculates the
error of the hidden node, and uses it for the next error. It repeats the
same steps through delta3, delta2, and deltal.

e =d-y;

delta = e;

e3 = W4'*delta;
delta3 = (v3 > 0).*e3;
e2 = W3'*deltas;
delta2 = (v2 > 0).*e2;
el = W2'*delta2;
deltal = (v1 > 0).*eil;



 The definition of the derivative of the RelLU function :
1, x>0

#(x) = {o, x <0

* |n the calculation of the delta of the third hidden layer, delta3,
the derivative of the ReLU function is coded :

1, x>0
(v3>0)—{0’ <0



 Following Is TestDeepRelLU.m file, which tests the
function and trains
the network 10,000 times and displays the output.

function. This program calls the

clear all
X = zerosid, 5, 5);

H-, -, h =011
0ol
0ol
001
011
-, . 2y=10111
ooo
011
10
111
H:, . Wyv=1111
ooo
011
ooo
111

— O o~ O — O O O O

—_ O = O

— O O — O s R s Y s N s B s

o0 o— O — O

i oo,

A

A=

0
I
0
1
0

= o= = O O

)

I
—

— O = =
— O = O

D=[10000;

1
w2
s
4

0100a0;
oo10a0;
ooo1l0;
oooo1t7a;

2¥rand(20, 25) -
2¥rand{20, 20} -
2¥rand{20, 20} -
2¥rand{ 5, 20} -

0
1
0
1
0

et s B~ e B

1
1
1
1
1

= —

—_ = =
u N - N

I
0;
0;
1
I

-0 = O O

for epoch = 1:10000

[W1,

end

N=5;

for k= 1:N
¥ = reshape(X(:,
w1 = Wl*x:
w1 = Relll{+1);
v = Wil¥s]:
v = Relll{+2);
w3 o= Wik
v3 = Relll{+3);
v o= WA¥3-
v = hoftmax{)

end

% traln

w2, W3, W4] = DeepRelUiW1, W2, W3, W4, ¥, D};

% Inference

o, kv, 25, 1




Dropout

* The function DeepDropout trains the example using the back-
propagation algorithm. It takes the neural network’s weights and
training data and returns the trained weights.

[(W1,W2,W3,W4] = DeepDropout(W1,W2,W3,W4,X,D)

* This code imports the training data, calculates the weight
updates (dW1, dW2, dW3, and dW4) using the delta rule, and
adjusts the weight of the neural network.



function [WL, W2, W3, W4] = DeepDropont{Wl, W2,k6 W3 W4 ¥ In

alpha = 0.01;
N=5;
for k= 1:N
x = reshapefdi-, -, k), 25, 13;
w1 = Wl*x;
vl = S1gmoldivl);
vl = vl ¥ Dropout{wl, 0.2%;
v = Wd¥v];
w2 = Blgmoldiv2);
vd = v ¥ Dropout({v2, 0.2%;
vh o= Wikyld-
v3 = Blgmoldivw3);
v3 = w3 ¥ Dropout({v3, 0.2%;
= W4*3-
= Boftmaxiv);
d =Dk, )
= =d - ¥
delta = e;

B3

deltal

=

deltal

el

deltal

dird
4

durs
3

du

dW1
1
end
end

= Wi '*Ja]lta;
= ¥3.%(1-%3) . %e3;

= Wi'*deltal;
v ¥ 1-w2)  *el;

W' *del ta?;
w1 ¥ 1-w1y, *el;

alpha*del ta*y3 ' ;
w4+ dwd;

alpha*de]l tad*2" -
WA+ dw3;

alpha*del taZ*l";
w2+ AW ;

alpha*del tal*x';
Wl o+ dWl;




* |t differs from the previous ones in that once the output is
calculated from the sigmoid activation function of the hidden node,
the Dropout function modifies the final output of the node.

* For example, the output of the first hidden layer is calculated as :

y1 = Sigmoid(v1);
vyl =yl .* Dropout(yl, 0.2);

« Executing these lines switches the outputs from 20% of the first
hidden nodes to O; it drops out 20% of the first hidden nodes.



* Example :

y1l =rand(6,1)

ym = Dropout(y1,0.5)

vyl =yl .xym

functlon vm = Dropout{w, ratla)
[, n] = slze(y);

7L = gRro5{m, mn);
- V1=
rm = round{wm*n*{1-ratlal);
1dx = randpermi m*n, num);
v 1dx) = 1 f (l-ratlo);
end

0.5356 |

0.9537
0.5442
0.0821
0.3663

0.8509

ym

N ©O O O NN N

y1*ym

1.0712
1.9075
0
0
0

1.7017

e ym contains zeros for as many elements astheratioand 1 /(1 -
ratio) for the other elements to compensate for the loss of output

due to the dropped elements




* This code Is almost identical to the other test codes. The only
difference Is that it calls the function when it
calculates the output of the trained network.

clear all
M., -, 4y =[00010: for epoch = 1:20000 ® traln
¥ = zeros(3, 5, 5); o011 (W1, W2, W2, W4] = DeepDropouti{Wl, W2, W3, Wi, X, D); cee—
0101 0; end
%<, -, 1y=[01100: LI
_ 00010 1; :
00100, N =5; % Inference
0o1l1a0a0;
DDIDDi Wi, i, 5y =[11111; for k = 1N
’ Looaoo; x = reshape(ii-, :, k), 25, 13;
01110] 11110
: vl = Wl*x;
0000 1; . _
H:.:, 2 =[11110; L1110 ¥l = Slgmold(vl);
oooanil;
01110; D=[10000; vl = Wi*yl;
1000 0; 01000¢0; v = Blgmold({+2);
11111 7; oo100;
0001 0; 3 _ gk
®:,o:. 3 =[11110: UNURIRUS BN E e
. T ; v3 = Slgmoldiw3);
oooanil; .
01110 L E*IEnd{ED, 25y - 1;
] W2 = 2*randiZ0, 200 - 1; v o= Wl
oooaoil;
W3 = MpandiZ0, 200 - 1 v = Softmax(v)
LTT100; WA = 2¥rand( 5, 20) - 1
end




Convolutional Neural
Network (ConvNet)

Phil Kim, MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence, 2017, chapter 6.
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« Before ConvNet, the feature extractor has been designed by experts of
specific areas, and was independent of Machine Learning.



s f &2 /
Training Data 2 ConvNet _ 0 - ’@
{Input, Correct output} b (Feature extractor + Classifier) -
~ fo

/

d

* ConvNet includes the feature extractor in the training process rather
than designing it manually.

» Feature extractor of ConvNet is composed of special kinds of neural
networks, of which the weights are determined via the training process.



/ Feature Extraction Network \ KCIassiﬁer Network\

Convolutional Pooling
KLayer Layer




Input Image

Convolutional Layer Feature Map

» Circled * mark (or @) denotes the convolution operation, and the
@ mark Is the activation function.

 The square grayscale icons between these operators indicate the
convolution filters.



Introduction : CNN — Convolutional Layer

* Kernel size : filter size(F)
e Stride : sliding length of filter per step(S)
* Padding : control the output feature maps’ size

e Same: Filter Zero padding
output feature width = ceil (W / S)
W : input feature width 0] 0,[ 01010 TBZ'/
S : stride 0
e Valid :

output feature width = ceil (W-F+1) /S)
W : input feature width

S : stride

0,
|
(0
-y
0.

|
=
[
|
i
|
F
L{] L T I O A 'EJJ http://deeplearning.n

et
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Input Image

139

18 | 54 | 51 | 239 | 244 weight
S5 | 121 | 75 78 0§ AN RO 429
= 18+51+35+
35 | 24 | 204 | 113 | 109 0O|1/0 18+51+35+121+204
3 B )| [t
3 154 | 104 | 235 | 25
15 | 253 | 225 ( 159 | 78
Input Image

18 | 54 | 51 | 239 | 244 weight
55 |121| 75 | 78 | 95 0|1 429 | 686

0|1
3 154 | 104 | 235 | 25
15 | 253 | 225 | 159 | 78

Input Image

55 121 | 75 | 78 | 95 01 429 | 686

10 633
35 24 | 204 | 113 | 109

ORIER = 35+154+225+15+204
3 154 | 104 | 235 | 25
15 | 253 | 225 | 159 | 78

Input Image
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55 | 121 | 75 | 78 | 95
35 | 24 | 204 | 113 | 109
3 | 154 [ 104 | 235 | 25
15 | 253 | 225 | 159 | 78
0 0 0 0 0

=18+121




Introduction : CNN — Convolutional Layer

Different Convolutional Kernels

5= |eim |5

QO = || = O] =
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blur
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Introduction : CNN — Pooling Layer

* Kernel size : pooling kernel  Single depth sice  Max-pooling

: 1127
Size X | | with 2x2 fi
. 5| 617 | 8 ?nadxsazgev;t i ‘ 6 | 8
e Stride : _usually equal to 32 I 2 I
kernel size TS
° Paddlng . Control the Output o . ¢ :’;tt?,\:/{)/rclfsz/S1n.github.io/convolutional-

feature maps’ size y

Average-pooling
[ 12| 11] 2

4 15| 17 10 N ‘10'10

AVETager ooimng
10 6 15 6 2

8 10 4 3

http://yhhuang1966.blogspot.com/2018/04/keras-
cnn.html




* The pooling process is a type of convolution operation. The
difference from the convolution layer is that the convolution filter
IS stationary, and the convolution areas do

* The pooling layer compensates for eccentric and tilted objects
to some extent. For example, the pooling layer can improve the
recognition of a cat, which may be off-center in the input image.

 As the pooling process reduces the image size, it is highly
beneficial for relieving the computational load and preventing
overfitting.



28-by-28 pixel black-and-white images from MNIST database

Q000QAV0 0D OOCDOODOOD
VANEN AN AR
S2R212222229222382222)
22333%373343333%333
Y dd a4y yyy Ly 4
S5 SB55S58555585555955%
bl bbbloblbbuLblbbls
1721%72%4927972\377127%
885VRFPIBTISETITLES
4999993999949 799999

MNISTdatabase: 70,000 images of handwritten numbers. In general, 60,000 images are used for training,
and the remaining 10,000 images are used for the validation test

Phil Kim - MatLab Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence 2017, Apress



Architecture of convolutional neural network (CNN)

®
10x10%20
el of— 0O — = O o |
- . - C 2
20 .
i | x20 W, v
. X20 . .
. . . O—’ 9
L]
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784x1 2(()Zon9v . RelLU Pcl):(il ) ~
X9X w— A atteny—
2000 F%%L(L)J Softmax
Layer Remark Activation Function
Input 28x28 nodes -
Convolution 20 convolution filters (9x9 ) RelU
Pooling 1 mean pooling (2x2) -
Hidden 100 nodes RelLU
Output 10 nodes Softmax

Phil Kim - MatLab Deep Learning with
Machine Learning, Neural Networks and
Artificial Intelligence 2017, Apress



While image passes through the convolution and pooling layers

Rectified Linear Units (ReLU)

10 >410 x 20

Phil Kim - MatLab Deep Learning with
Machine Learning, Neural Networks and
Artificial Intelligence 2017, Apress
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Back-propagation with convolution




BbackK-propagation with average pooling

operation
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Back-propagation with max pooling operation
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» MnistConv.m trains the network using the back-propagation algorithm
[W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D)

W1: convolution filter matrix

WS5: pooling-hidden layer weight matrix
Wo : hidden- output layer weight matrix
X: training input data

D: correct output



MnistConv.m

function [W1l, W5, Wo] = MnistConv (W1,
alpha = 0.01;
beta = 0.95;
momentuml = zeros(size (W1l));
momentumb = zeros(size (WH)) ;
momentumo = zeros(size (Wo)) ;
N = length (D),
bsize = 100;
blist = l:bsize: (N-bsize+l);
% One epoch loop
for batch = 1l:length(blist)
dWl = zeros(size (W1l));
dW5 = zeros(size (W5));
dWo = zeros(size (Wo)) ;

W5, Wo, X, D) % Mini

Q

o2

[¢)

for k
s F

o\

O

o\°

0 Qo

(s

begin =

-batch loop

blist (batch);
begin:begint+bsize-1
orward pass

inference

X(:, :, k)
= Conv(x, W1
= ReLU(yl);
= Pool (y2);
= reshape (y3,
= Wbh*vy4;
= RelLU(v5);
= Wo*y5;
Softmax (v) ;

) ;

(1, 1)7

ne-hot encoding

zeros (10, 1
(

) ;
ub2ind(size(d), D(k), 1))

o o® oA® o© o°© o° o o©°

o\

Input, 28*28
W1:9*%9*20, y1:20*20*20
y2:20*20%20

Pooling, y3:10*10*20
Flattening, y4:2000*1
W5:100*%2000, v5:100*1
y5:100%*1

Wo:10*100, wv:10x1
y:10*1

1;

The number of batches, bsize, 18 set to be 100. As we have a total 8,000 training data points, the weights are adjusted 80
(=8,000/100) times for every epoch. The variable blist contains the location of the first training data point to be brought into
the minibatch. Starting from this location, the code brings in 100 data points and forms the training data for the minibatch.

blist = 1, 101, 201, 301, ..., 7801, 7901 ]




MnistConv.m (continued)

~

Update weights

bsize;
bsize;
bsize;

alpha*dWl + beta*momentuml;
W1l + momentuml;

alpha*dWb + beta*momentumb5;
W5 + momentumb;

alpha*dWo + beta*momentumo;
Wo + momentumo;

s Backpropagation

e =d - vy; % Output layer 10*1 o

delta = e; % 10*1 o

e5 = Wo' * delta; % Hidden (ReLU) layer (100%10)*10*1=100*1 dwl = dil

delta5 = (y5 > 0) .* e5; % (100*1).*(100*1)=100*1 dW5 dW>
dWwo = dWo

ed = W5' * deltab; % Pooling layer (2000*100)*100*1=2000%*1
momentuml

e3 = reshape(ed4, size(y3)); % 2000*1 = 10*10*20 Wl

e2 = zeros(size(y2)); % 20*%20*20

W3 = ones(size(y2)) / (2*2); % 20%20*20 momentums

for ¢ 1:20 W5

e2(:, :, c) = kron(e3(:, :, c), ones([2 2]1)) .* W3(:, :, c); % 20*%20*20

end momentumo
W

deltaz2 = (y2 > 0) .* e2; % ReLU layer (20*%20*20) .*(20*20*20) ©

end
deltal x = zeros(size(Wl)); % Convolutional layer 9*9*20
for c 1:20 end
deltal x(:, :, c) = conv2(x(:, :), rot90(deltaz2(:, :, c), 2), 'valid'");

end

dWwl = dWl + deltal x; % 9*9*20

dWwb = dW5 + deltab*y4d'; % deltab*y4' :(100*1)*(1*2000)=100*2000

dWo = dWo + delta *yb'; % delta *y5%' :(10*1)*(1*100)=10*100

end




* The following Is the back-propagation from the output layer to

delta

e5
deltas

e4
e3

the subsequent layer to the pooling layer.

d -y;
e;

Wo' * delta;
e5 .* (y5> 0);

W5' * deltas;
reshape(e4, size(y3));

oL
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* Two more layers to go: the pooling and convolution layers. The
following shows the back-propagation that passes through the
pooling layer-RelLU-convolution layer.

e2 = zeros(size(y2)); % Pooling @)

W3 = ones(size(y2)) / (2*2); oL oL _9y; PN COR:
@ = 3.3 2.@ J 2
for ¢ = 1:20 dy;;~ 0y 0y
e2(:, :, ¢) = kron(e3(:, :, c), ones([2 2])) .* W3(:, :, c); oL oL ayg)__ ) 1 (D
end 5 l(]) T n@aud 29 ¢ (yu )
(1)
delta2 = (y2 > 0) .* e2; oL 9y~
i ) ’ o (1) = XYj=1 i 195D o
deltal x = zeros(size(W1)); 2
for ¢ = 1:20 ( (WL)); = _anlzm 16( )xl 1+m,j—1+4+n
delta1l x(:, :, c) = conv2(x(:, :), rot9o(deltaz(:, :, c), 2),
'valid');

end

—5®



» MnistConv.m calls Conv.m, which takes the input image and the
convolution filter matrix and returns the feature maps.

function y = Conv(x, W)
%
%

[wrow, wcol, numFilters] = size(W);
[xrow, xcol, ~ ] = size(x);

yYOW
ycol

XTOW - Wrow + 1;
xcol - wcol + 1;

y = zeros(yrow, ycol, numFilters);

for k = 1:numFilters
filter = W(:, :, k);
filter = rot9o(squeeze(filter), 2);
y(:, :, k) = conv2(x, filter, 'valid');
end

end



» MnistConv.m also calls Pool.m, which takes the feature map
and returns the image after the 2x2 mean pooling process.

function y = Pool(x)

v

%

% 2x2 mean pooling

%

[xrow, xcol, numFilters] = size(x);

y = zeros(xrow/2, xcol/2, numFilters);

for k = 1:numFilters
filter = ones(2) /7 (2*2); % for mean
image conv2(x(:, :, k), filter, 'valid');

y(:, :, k) = image(1:2:end, 1:2:end);
end

end



* This code calls the two-dimensional convolution function, conv?,
just as the function Conv does. This Is because the pooling
process is a type of a convolution operation.

* The mean pooling of this example Is implemented using the
convolution operation with the following filter:

NN
U

* The filter of the pooling layer is predefined, while that of the
convolution layer Is determined through training.



TestMnistConv.m

clear all ® Test
%
, : : , X = Images(:, :, 8001:100003; 2,000 test data points
Images = loadM¥ISTImages( ' /MNIST/+10k-1mages. idxd-ubvte'); D = Labels(8001:10000):
Images = reshapel Images, 28, 28, []13:
Labels = loadMNISTLabels{ ' /MNIET/t10k-labels. idxl-ubyte'); acc = -
Labels(Labels == 0) = 1f; % 0 --= 10 N = length(D):
for k= 1:N
mgi 1); ¥ =H{-, -, k) % Input, 28328
% Learning vl = Conwix, Wlo; % Convolutlon, 20x20x20
B v = Ralll{w1); B
Wl = le-2*randn([9 9@ 207); v3 = Pool({w2); % Fool, 10=10x20
WS = (2*rand(100, 2000 - 1) * sqrt(6) / sqrt(360 + 20003 y4 = reshape(y3, [1, 1) i 2000
— * -
Wo = (Z*rand( 10, 100) - 1) * sqri(f) / sqrt( 10 + 100): w5 = W5tyd: % Rell, S0
w5 = Rell{+5); w,
Lo . {.5000- = Waks5; % Softmax, 10
= Images(-, -, L i = Softmaxiw); %
I = Labels(1:3000%;
[-. 11 = max(¥);  convert the 10x1 output into a digit
for epoch = 1:3 if i==D(k) .
to compare with the correct output
rnoich acc = acc + 1;
[Wl, W&, Wo] = MunlstCore( W1, WS, Wao, X, D); end
end end
savel 'MnistConv.mat'); acc = acc / N;
fprintf( 'dccuracy 1s %fvn', acc); accuracy 9465%




PlotFeatures.m

clear all

load( 'MnistConw.mat ')

E =2

x =Xz, -, k)

vl = Comwlxz, Wl

v2 = Rellliwl);

¥3 = Pooli{wd);

vd = reshape(v3, [1, 1J;
v o= Wo¥ard -

vh = Relliv5);

v o= Watyh:

v = Aoftmax{+);

figure;
display network{x(:));
t1tle 'Input Image')

conwFllters = zerosi 9%, 20);
for 1 = 1:20
filter

conwFlltersi:, 1)

filtex(:);
end

figzure

display network({convFi1lters);
title 'Convolution Filters')

wic-, -, 13;

% Convolutlon,

T

% Pool,

T

% ReLll,

B

% Softmax,
B

2020220
10x10:20
2000

260

10

fList = zeros{20%20, 20);
for 1 = 1:20
feature =wl{:, :, 13;
fListi:, 1) = feature(:);
end
figure

displavy network( fList);
title{ 'Features [Convolution]')

fList = zeros(20%20, 20y
for 1 = 1:20
feature = (., ., 131;
fListi:, 1) = feature(:);
end
figure

displavy network( fList);
title{ 'Features [Convolutlon + Eelll]')

fList = zeros{10%10, 203
for 1 = 1:20
feature = w3, 1, 13;
fList{:, 1) = feature(:);
end
figure

dizplay network{ fList);

- title{ 'Featunres [Convolutlon + EellU + MeanPool]l')




Convolution Filters




Convolutional Neural Network, CNN

Key Component of CNN /
. XD E.] — BICYCLE

i
Pooling Layers %

FULLY
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING j \FLA"EN CONNECTED SOFTMAX

FEATURE LEARNING CLASSIFICATION
Fully-Connected Layers Probablly
Flower
—>

.used todefinea flower Tree

error with label

I

Sliding window £ é
Loss 5 p— Xi . il
AN e E
Calculate output ,igfjjjgﬁgih -, | i shpes RIS X E N
: I

K}...‘ ‘-/ \ '.. -/ \ o. j -.
Every feature map output is the . - - '/

result of applying a filter to the image
The new feature map is the next input

FC FC

Forward propagation

i Activations of the network at a particular laye
Backpropagation Ly i)

https://www.mathworks.com/




Introduction : CNN — LeNet, 1998

C3: f. maps 16@10x10

MNIST

PRAMNNVII -~ =
S VNS WwOI N\
LOPraxnQIxNw
SN WY &~~~ &N
QNN oW o
Neg&—=J o b & o
RUo NN
O ONC LV —

NOcochkx+r Ly
N~ nng -\ &

g8nlkbg g b/

Fig. 4. Size-normalized examples from the MNIST database.

el B

4l
i
Ry
4

b

)

sor. AE PR RN . 0

-

T K‘La yer-5 f\
Layer-3 Input

Layer—7  http:/lyann.lecun.com/exdb/lenet/

C1: feature maps
INPUT
330 6@28x28

S2: f. maps
B6@14x14

|-r

LeCun et al. 1998
S4: f. maps 16@5x5

CS.1ayer gg.jayer OUTPUT

‘ ‘ Full ConAection ‘ Gauss
Convolutions Subsampling Convolutions  Subsampling Full connection
@ Image Classification E@g
. - - ] ; v Filename
: C:/Users/WIN/MMIST_data/mnist_trail C:/Users/ WIN/MMNIST_data/mnist_test
Load Train Data || Load Test Data || [~ Directory
Test Accuracy: 0.90833336
Train Model:
Loss: Accuracy:
ag
lexMNet
1.0
0.8
000
0.6
Drop out rate:
000 + 0.4
0.5
) W 2D 0.2 1
Leaming rate: - 5, 01 : . : :
5 10 5 10
0.001 o .
Image Size XX [z3  Epoch: ’7600 Training Parameters:
N Class: : : Training Model:LeMet
Image Size Y: |23 Drop out0.5
10 3 - ’7 Confirm parameter Learning Rate0.001
Slice Numbers. Mumbers of Classification: 10
. Batch Size:120
K-fold Size: _ Image Size:28x28
Train Save Epoch:G00
Dimension:2D




Introduction : CNN — AlexNet, 2012

Main idea

Activation function
 RelLLU

Dropout

Data Augmentation
« Patch

. o
.................

ntps://www.disneyresearch.com/

Rectified Linear Units (ReLU)

R(z) =maz(0, z)
8 |
6 |
4
2
T 5 0 5 10

AlexNet Architecture ;

(a) Standard Neural Net

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from

Dropout

(b) After applying dropout.

overfitting”, JMLR 2014

3 48

rull S 152 128 2043
57 128 R ra—
H .
i Y 13
Sy |- = :
1Y A ; =
5 s 3 I N M
A B sz 1.‘J 13 dense 2ns
Y 152 192 128 Max
" I 2048
Strid ax 128 Max pesie
of 4 poaling paaling

2048

1000



Introduction : CNN — VGG Net, 2014

\ UNIVERSITY OF

OXFORD

Visual Geometry Group

VGG-16

224 x 224 x 3 224 x 224 x 64

Department of Engineering Science, University of Oxford

112 x 112 x 128

_5-?3‘56“255 7x7x512

28 x 28 x 512
. 114 x 14 x 512 1x1x4096 1x 1 x 1000

— convolution+RelLU
—1 max pooling
fully nected+RelU
softmax

16-layer 7.5% 7.4%
19-layer 7.5% 7.3%
model fusion 7.1% 7.0%

 Small convolutional kernel

IS better (3x3)
* Deeper Is better

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
arXiv:1409.1556v6 [cs.CV] 10 Apr 2015



Deep Learning : InceptionVV3 - GooglLeNet

Input: 299x299x3, Outpul:8x8x2048

tch size/stride . s
e il or remarks SR St
conv 3x3/2 299x299x 3
conv 3x3/1 149%x149x 32
conv padded 3x3/1 147x147x 32 - 11
pool 3x3/2 147x 147 x64
conv 3x3/1 T3xT3x64
conv 3x3/2 TIxT1x80
conv 3x3/1 35x35x 192
3xInception As in figure|5 35x35x 288
5xInception | As in figure |6} 17x17x 768 Convolution Input:
2xInception | As in figure[J| 8x8x 1280 - :ﬂ;?:';zﬂl EHSIRESENS i
pool 8x8 8 x 8 x 2048 sm Concat
linear logits 1 x1x2048 mm Dropout
softmax classifier 1 x 1 x 1000 #=  Fully connected
mm Softmax —_—
Filter Concat Filter Concat
3x3
i a3 || 1x3
3x3 3x3 1x1 AN ,
I i i atn .
1x1 1x1 Pool | | 1x1 EIREIRE] g
Base
\/ |1x1| |1x1| |Pool| |1x1|

Base

Figure T lnccpnon ‘modules with expanded he nlter bank outputs.

Figure 5. Inception modules where each 5 x 5 convolution is re-
placed by two 3 x 3 convolution, as suggested by principle [3] of
Section

This architecture is used on the coarsest (8 x 8) grids to promote
high di ional rep s, as suggested by principle [2] of
Section [J] We are using this solution only on the coarsest grid,
since that is the place where prod high di | sparse

Figure 6. Inception modules after the factorization of the n x n
i In our proposed archi

representation is the most critical as the ratio of local processing

wechosen = 7for  (by 1 x 1 convolutions) is increased compared to the spatial ag-

the 17 x 17 grid. (The filter sizes are picked using principle B)

gregation.

arXiv:1512.00567v1 [cs.CV] 2 Dec 2015

Cutput:

Bx8x2048

;

Final part:Bx8x2048 -> 1001

https://cloud.google.com/tpu/docs/inception-v3-advanced

Top-1 | Top-5

Network Erfar Erfor B(rf[:)s;s
GoogleNet [20] 29% 9.2% 1.5
BN-GoogLeNet 26.8% - 1.5
BN-Inception [7] | 25.2% 7.8 2.0
Inception-v2 23.4% - 3.8
Inception-v2

RMSProp 23.1% 6.3 3.8
Inception-v2

Label Smoothing | 22.8% 6.1 3.8
Inception-v2

Factorized 7 x 7 | 21.6% 5.8 4.8
Inception-v2

BN_Euxﬂim 212% | 5.6% | 4.8




Introduction : CNN — ResNet, 2015

Ix3 conte, b3

weight layer

F(x) Jrelu 3u3 conw, 64
weight layer
_______ 32 conve, B4
ResNet-18 L
— ResNet-34 . . . .‘r—l-]a‘\r'er .F(X) + X 13 4
2 o 20 30 40 S50 RN,
iter. {led) iter. | led) https://www.jigizhixin.com/articles/2017-08-19-4 4
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot. the residual networks have no extra parameter compared t«
their plain counterparts.
layer name | output size 1 8-layer | 34-layer I S-layer | 101-layer | 152-layer method top-1 err. top-5 err.
5 :
conv | 112x112 T=T.64, stndf:.z VGG [‘“] (ILSVRC' 14) ) 3_431
333 max pool, stride 2
. 1%1.64 ] [ 1x1.64 ] [ o1x1.64 ] GDDELENE[ [44] {ILSVR{T]‘JJ = 7.89
comvix | 36x36 | 3364 4, [ 33,64 }ﬁ 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3 VGG [41] 4.4 71
* a2 £] vS . -
| 3x3.64 3%3, 64 | 1x1,256 | | 11,256 | | 11,256 | PReLU q 1; 21.59 s
s 1281 | Tawstas1 || 1XL128 ] [ 1x1,128 | [ 1x1,128 | cLU-net [15] : :
comv3ix | 28x28 3:3' s | %2 3i3‘ 128 |4 3x3,128 | x4 3x3,128 | x4 3x3, 128 | x8 BN-inception [16] 21.99 5.81
L ’ . . ! E 1x1,512 1x1,512 I=1,512
L~ 1 L~ ! L~ l ResNet-34 B 21.84 5.71
- - - q 11,256 1x1. 256 1= 1,256
comvax | 1xia || 32230 Hua || IR0 16 || 3x3,256 | x6 || 3x3.25 [x23 || 3x3,256 |x36 ResNet-34 C 21.53 5.60
- ’ . . ! E | L1, 1024 | 1x1,1024 | 1x1, 1024 | ResMet-50 20.74 525
- - - . [ 1x1,512 1x1,512 1x1,512 R
esNet-101 19.87 4.60
comSx | Tx7 ;"‘;:i x2 ;“;::; x3 || 3x3.512 |x3| | 3x3.512 [x3 3x3,512 | x3
[ 2720 ] [ 27220 | 1x1,2048 | 11, 2048 1x 1, 2048 ResNet-152 19.38 4.49
1x1 average pool, 1000-d fc, softmax
. .
FLOPs TE<10° T6x10° | T Rx 100 | T Ex 100 | TT3<10° Table 4. Error rates (%) of single-model results on the ImageNet

arXiv:1512.03385v1 [cs.CV] 10 Dec 2015 validation set (except f reported on the test set).



Deep Learning Model : FCN

FCN-32s FCN-16s FCN-8s Ground truth
{
' p 32% upsampled 2x upsampled 16= upsampled 2% upsampled 8x upsampled
prediction (FCN-32s) prediction prediction (FCN-16s) prediction
image pooll pooll poold poold poold *T‘
=D predietion predietion 4'—"

» Exclude fully connected layers
(only used in classification)

- Convolution Transpose: for up-sampling Semantic Segmentation:

«  Skip and Summation: fusion the predictions with ~ B EVERM 7B « =W -
the same size feature maps, retraining high-level ~ 1TA * SR aAIE
semantic information.

Jonathan Long ,Evan Shelhamer ,Trevor Darrell 71
“Fully Convolutional Networks for Semantic Segmentation.”



Deep Learning Model : U-Net

X xlx A<l &
© © [|© XEXEO O
o 8+ o) OIORG X
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Copy & concatenate
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Up-conv 3x3 © % » The state-of-art on medical images
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binary segmentation.

» The successive convolution block to
obtain the more precise output.

» Concatenate the same size feature maps
from encode part to decode part.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox 77
- “U-Net: Convolutional Networks for Biomedical Image Segmentation”
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IIIT-D Multi-sensor Optical and Latent Fingerprint (MOLF)

1IT-D MOLF database has 19,200 fingerprints collected using from 100 subjects using five different capture methods: (i) Lumidigm

Venus IP65 Shell, (i) Secugen Hamster-1V, (iii) CrossMatch L-Scan Patrol, (iv) Latent fingerprints, and (v) simultaneous latent fingerprints

lifted using black powder dusting process. The details of the database are given below:

[ Subset | Fingerprint type | No. of Images | Image Size | Capture protocol | Comment |

DB1 Multi-spectral live-scan dap 4000 352 x 544 100 users x 10 fingers x | Lumidigm Venus
2 sessions x 2 instances

DB2 Live-scan dap 4000 258 x 336 100 users x 10 fingers x | Secugen Hamster IV
2 sessions x 2 instances

DB3 Live-scan slap 1200 1600 x 1500 [ 100 users x 3 slap prints | CrossMatch L-Scan Patrol
x 2 sessions x 2 instances

DB3_A Live-scan dap 4000 variable 100 users x 10 fingers x | Cropped prints from DB3
2 sessions x 2 instances

DB4 Latent 4400 variable 100 users x 2 hands x 2 | Latent fingerprints, cropped from simul-
sessions x 11 instances taneous prints

DB5 Simultaneous latent 1600 1924 x 1232 | 100 users x 2 hands x 2 | Simultaneous impression with annotated
sessions x 4 instances ROI, core points and minutiae
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http://www.iab-rubric.org/resources/molf.html
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