

本週學習目標

1. 認識X光與電腦斷層原理

X光性質與X光管
X光與物質交互作用
電腦斷層設備介紹

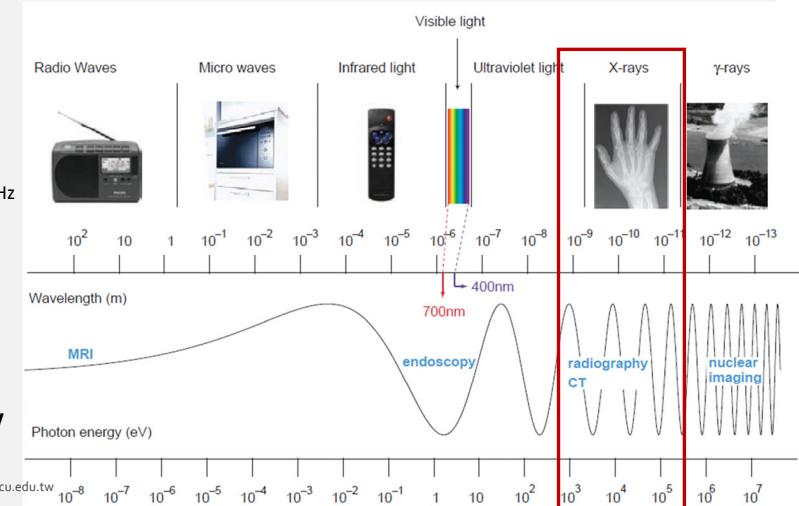
2. 了解電腦斷層影像重建概念

影像投影與Random轉換
影像反投影與影像重建
扇形投影的概念

Reference:
Fundamentals of Medical Imaging (2nd Ed.)
Chapters 2 & 3

page 2

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


page 3

Electromagnetic Spectrum

$$E = hf = \frac{hc}{\lambda}$$

Planck's constant,
 $h: 4.14 \times 10^{-15} \text{ eV/Hz}$
Light Speed,
 $c: 3.00 \times 10^8 \text{ m/s}$

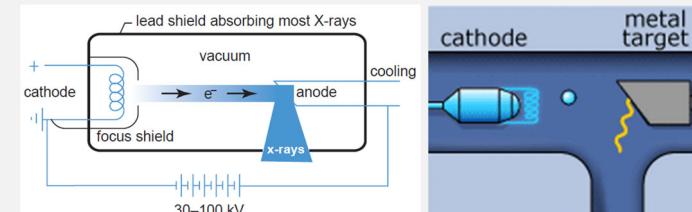
Energy of X-ray 1 to 100 keV

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 4

Discovery of X-Ray

- X-rays were discovered in 1895 by **Wilhelm Conrad Röntgen**, who received the first Nobel Prize in Physics in 1901.
- "X" indicates an unknown type of radiation.



Hand with Rings: print of Wilhelm Röntgen's first "medical" X-ray, of his wife's hand, taken on 22 December 1895.
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 5

X-Ray Generation

- X-rays are produced when electrons strike a metal target.
- The electrons are released from the heated filament and accelerated by a high voltage towards the metal target.
- The X-rays are produced when the electrons collide with the atoms and nuclei of the metal target.

<https://educationalgames.nobelprize.org/educational/physics/x-rays/how.php>

page 6

Parameters of X-Ray Source

• Amount of emitted electrons

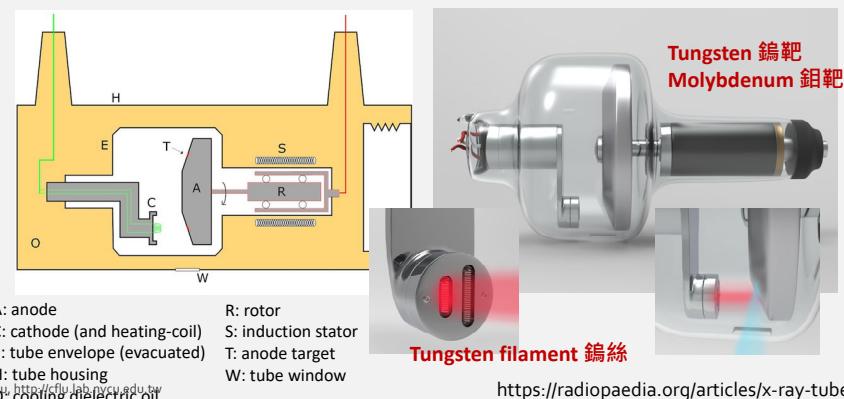

- The cathode current multiplied by the time the current is on (typically expressed in **mAs**).
- Ranged from 1 to 100 mAs

• Energy of emitted electrons

- The voltage between cathode and anode (typically expressed in **kV**).
- For most examinations the values vary from 50 to 125 kV.

• Total incident energy

- The product of the voltage, the cathode current, and the time the current is on. (typically expressed in joules, $1 \text{ J} = 1 \text{ kV mAs}$)
- **99% energy → heat and 1% → X-ray**



Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 7

X-Ray Tube (X光管)

- filament (cathode): boils off electrons by thermionic emission
- target (anode): electrons strike to produce x-rays

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 8

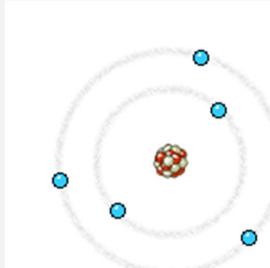
Types of X-Ray

- **Bremsstrahlung x-ray** 制動輻射/剎車輻射
 - German for "braking"
 - Electrons lose kinetic energy as they pass through atoms in the anode.
 - Electrons are attracted to the positively charged nuclei.
 - The closer to the nucleus the electron passes, the more kinetic energy it loses.

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

<https://educationalgames.nobelprize.org/educational/physics/x-rays/what.php>

page 9


Types of X-Ray

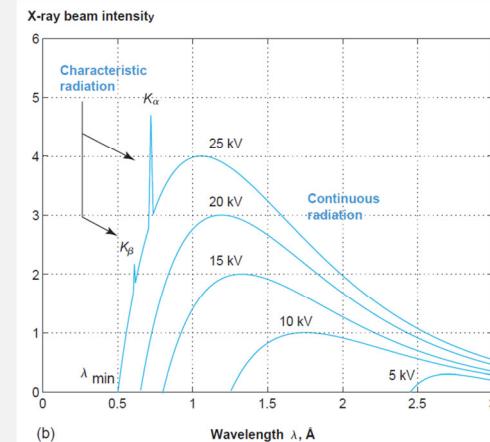
• Characteristic x-rays 特性輻射

- The energy of the electrons can release an orbital electron (e.g., the K shell) in the target atom.
- The vacancy left in the K-shell must be filled by outer-shell electrons (e.g., the L shell).
- This process of electron transfer between shells produces "characteristic" x-rays.

$$E = E_L - E_K$$

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

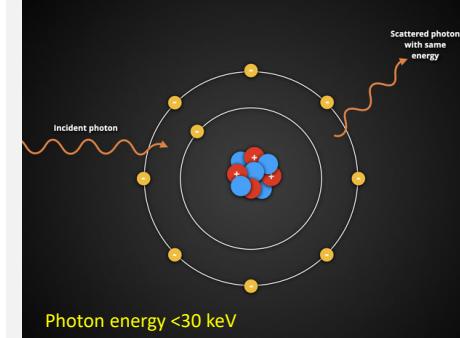
<https://educationalgames.nobelprize.org/educational/physics/x-rays/what.php>


page 10

Types of X-Ray

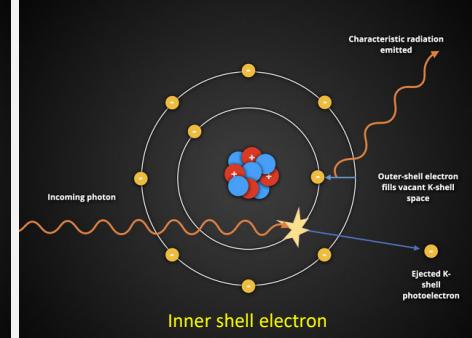
- **Bremsstrahlung x-ray**
continuous radiation
- **Characteristic x-rays**
If electrons have energy equal to or greater than the binding energy of the orbiting electrons in target atoms, they are likely to be ejected.

The peaks K_{α} and K_{β} are due to L-shell and M-shell drops respectively.


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 11

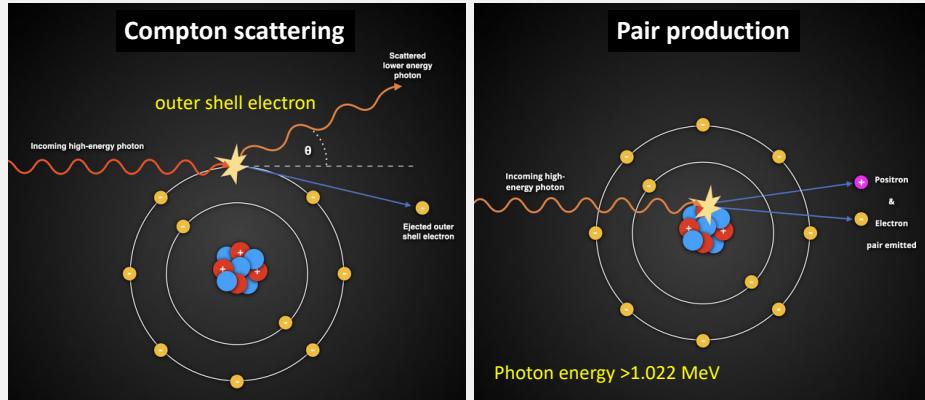
Interaction with Matter



Rayleigh/coherent scattering

Photon energy <30 keV

Photoelectric absorption

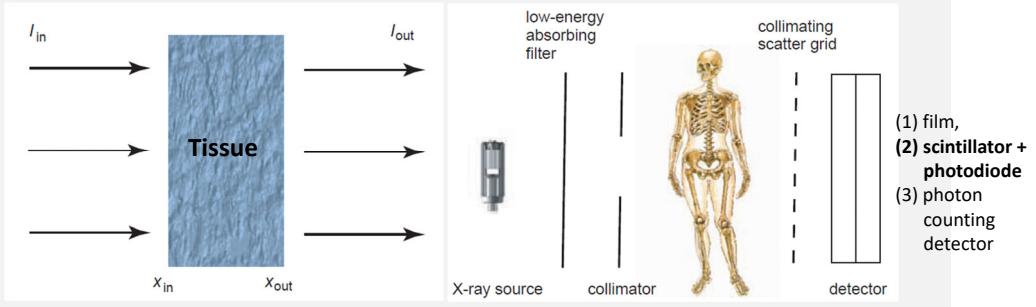


Inner shell electron

page 12

Chia-Feng Lu, <https://radiopaedia.org/cases/types-of-photo-atom-interaction-diagrams#image-53246805>

Interaction with Matter

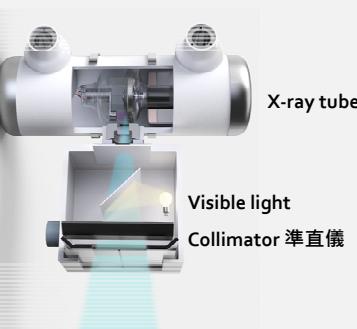
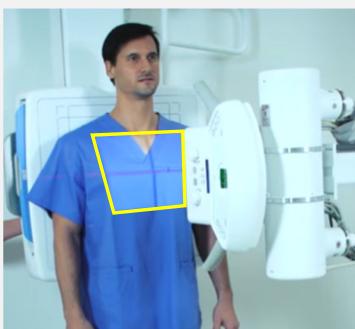

Chia-Feng Lu, <https://radiopaedia.org/cases/types-of-photo-atom-interaction-diagrams#image-53246805>

page 13

Interaction with Tissue

$$I_{out} = I_{in} e^{-\int_{x_{in}}^{x_{out}} \mu(x) dx}$$

μ is linear attenuation coefficient (typically expressed in cm^{-1}).



Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 14

X-Ray System

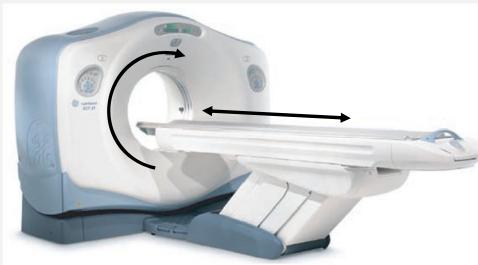
- X-ray tube, filter, collimator
- Detector/cassette/film
- Exam table
- Operating console

Chia-Feng Lu, https://youtu.be/_KUmCNmpLeA?si=CAh3NA7VLJwsHn2 <https://radiopaedia.org/articles/x-ray-tube-1>

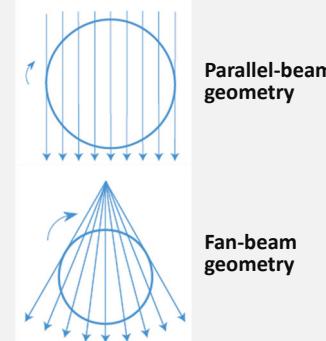
page 15

電腦斷層(CT)原理

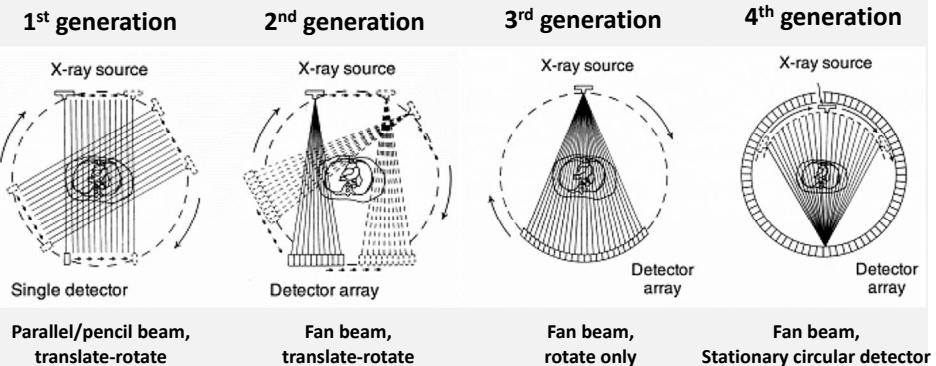
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


<https://youtu.be/l9swbAtRRbg>

page 16


Computed Tomography (CT)

- CT produces cross-sectional images representing the X-ray attenuation properties of the body.



Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

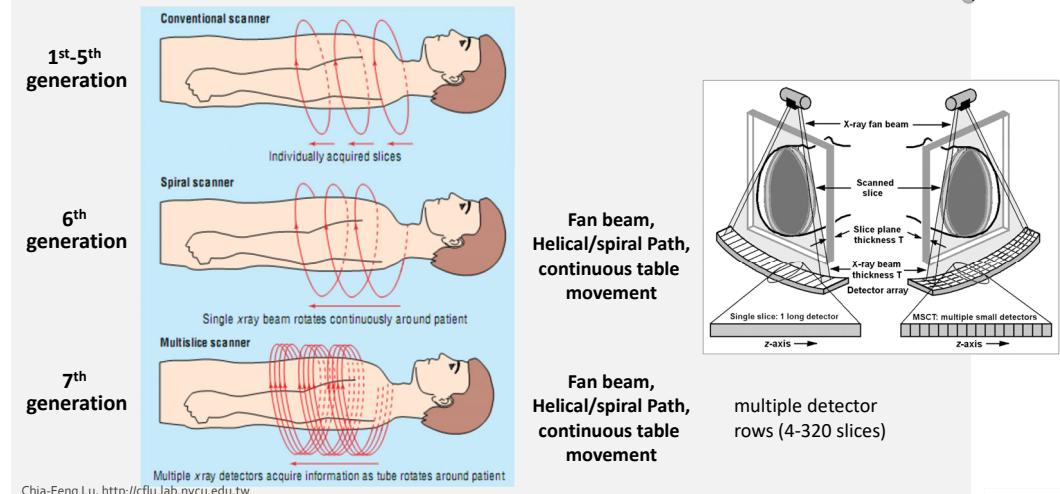
page 17

CT Generations

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 18

CT Generations



Generation	Key Features	Scanning Motion	Time per Scan	Advantages	Limitations
1 st Generation (1970s)	Single X-ray tube, single detector, pencil beam	Translate-Rotate	4-5 minutes per slice	First medical CT, improved brain imaging	Very slow, high noise, low resolution
2 nd Generation (Mid-1970s)	Multiple detectors (up to 30), fan-shaped beam	Translate-Rotate	20-90 seconds per slice	Faster than 1 st gen, improved resolution	Still slow, limited speed for dynamic imaging
3 rd Generation (Late 1970s – Present)	Curved array of detectors (hundreds), fan beam	Rotate-Rotate	A few seconds per slice	Faster scans, better resolution	Ring artifacts due to detector failure
4 th Generation (1980s)	Stationary detector ring, rotating X-ray tube	Rotate-Only	<1 second per slice	No ring artifacts	Expensive due to many detectors
5 th Generation (1980s – 1990s)	Electron Beam CT (EBCT), no moving X-ray tube	Electron beam deflection	Milliseconds per slice	Ultra-fast, ideal for cardiac imaging	High cost, specialized use

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 19

CT Generations

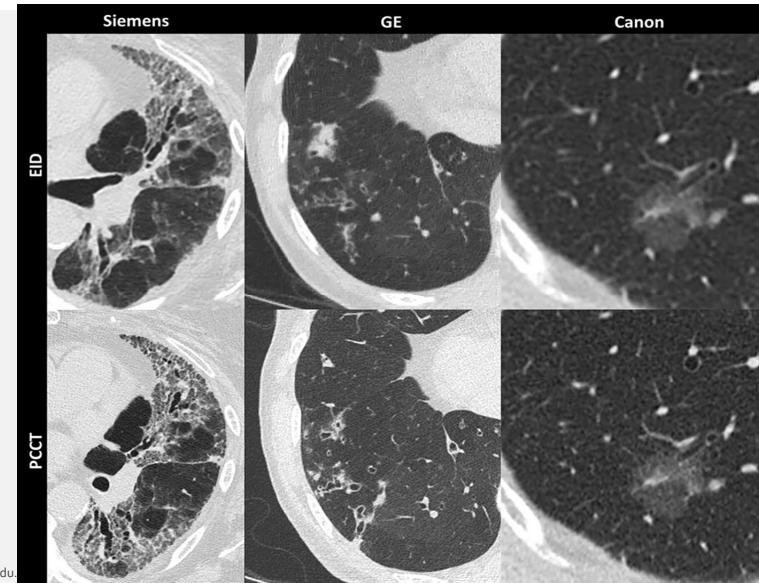
Journal of Nuclear Medicine Technology June 2008, 36 (2) 57-68.

page 20

CT Generations

Generation	Key Features	Scanning Motion	Time per Scan	Advantages	Limitations
6th Generation (1990s – Present)	Helical (Spiral) CT , continuous table movement	Helical Path	Whole scan in seconds	Continuous imaging, 3D reconstruction	Requires high computing power
7th Generation (Late 1990s – Present)	Multi-Slice CT (MSCT) , multiple detector rows (4-320 slices)	Helical, multiple rows	Sub-second per whole scan	High resolution, fast, larger coverage	Higher radiation dose if not optimized
8th Generation (2000s – Present)	Dual-Source CT (DSCT) , two X-ray tubes, two detectors	Dual-energy helical	<1 second for whole-body	Faster cardiac scans, material differentiation	Expensive, complex image processing
Future	Photon-Counting CT (PCCT) , AI-Assisted CT, Spectral CT	Varies	Real-time imaging	Lower dose, better contrast, AI enhancements	High cost, advanced processing needed

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


page 21

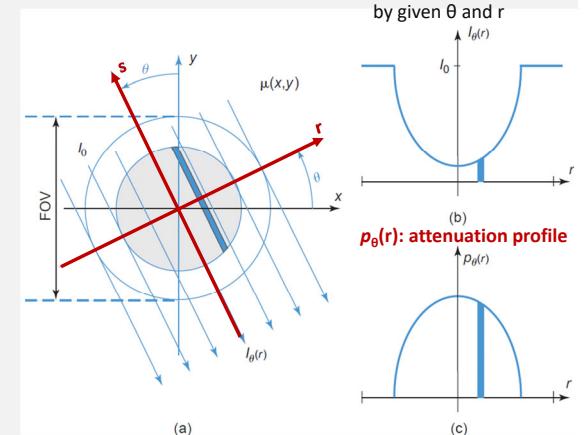
電腦斷層影像重建

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 23

Photon Counting CT

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

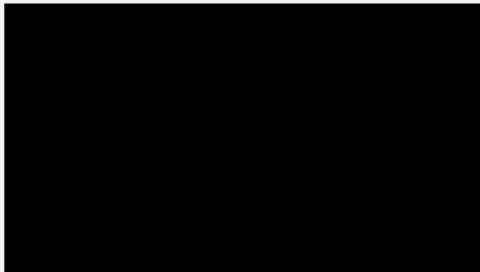

page 22

Projection in CT

- Projection of the 2D parallel-beam geometry
- X-ray beams make an angle θ with the y-axis.

$$\begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix}$$


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 24

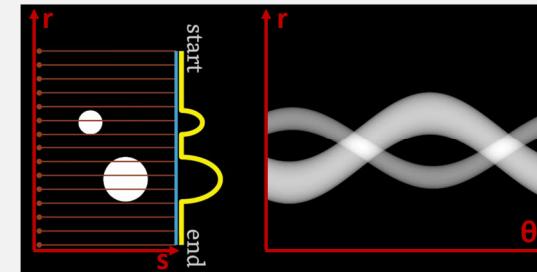
Projection and Random Transform

- Stacking all the attenuation profiles $p_\theta(r)$ results in a 2D dataset $p(r, \theta)$ called a **sinogram**.

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw> https://youtu.be/LS4C7-GE_zE?feature=shared

page 25

$$p(r, \theta) = R\{f(x, y)\} = \int_{-\infty}^{\infty} f(r \cdot \cos\theta - s \cdot \sin\theta, r \cdot \sin\theta + s \cdot \cos\theta) ds$$


- The transformation of a function $f(x, y)$ into its sinogram $p(r, \theta)$ is called the **Radon transform**.

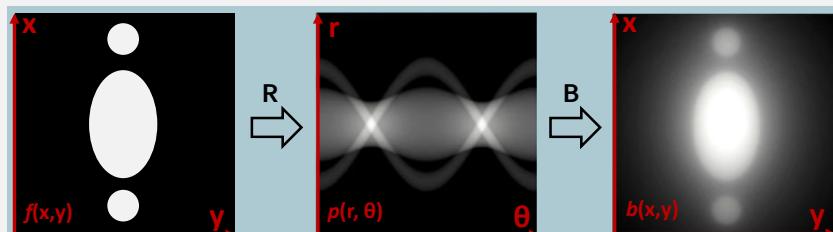
Projection and Random Transform

- Stacking all the attenuation profiles $p_\theta(r)$ results in a 2D dataset $p(r, \theta)$ called a **sinogram**.

$$p(r, \theta) = R\{f(x, y)\} = \int_{-\infty}^{\infty} f(r \cdot \cos\theta - s \cdot \sin\theta, r \cdot \sin\theta + s \cdot \cos\theta) ds$$

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw> https://youtu.be/LS4C7-GE_zE?feature=shared

page 26


Backprojection

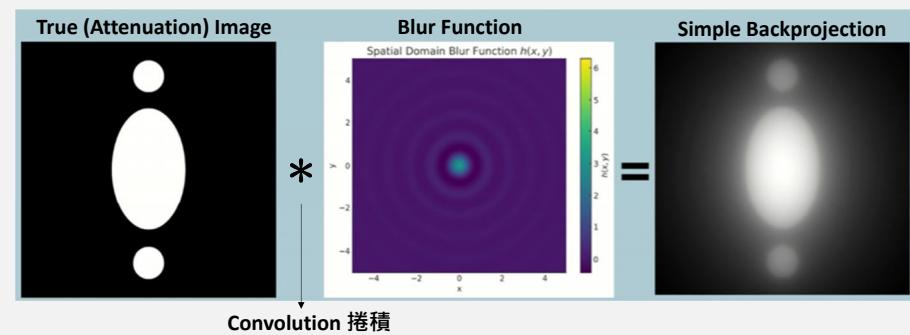
- Backprojection** is the procedure to reconstruct the $f(x, y)$ based on the signogram $p(r, \theta)$.

$$b(x, y) = B\{p(r, \theta)\} = \int_0^{\pi} p(x \cdot \cos\theta + y \cdot \sin\theta, \theta) d\theta$$

任一點 $f(x, y)$ 的數值，可以藉由把不同角度的投影量 $p(r, \theta)$ 作加總來反推

Simple backprojection creates a **blurred reconstructed image**.

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


<https://youtu.be/ahpFGvyM0Ak?feature=shared>

page 27

Effect of Blur Function

- The simple backprojection produces image similar to the true image convolved with a blur function.

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

<https://youtu.be/3lqYMN1PYIE?feature=shared>

page 28

Filtered Backprojection

- **Backprojection** is now performed on the filtered sinogram $p^*(r, \theta)$ to eliminate the “blurring” effect.

$$f(x, y) = \int_0^\pi p^*(x \cdot \cos\theta + y \cdot \sin\theta, \theta) d\theta$$

Convolution with the inverse Fourier transform of the **ramp filter** $|k|$.

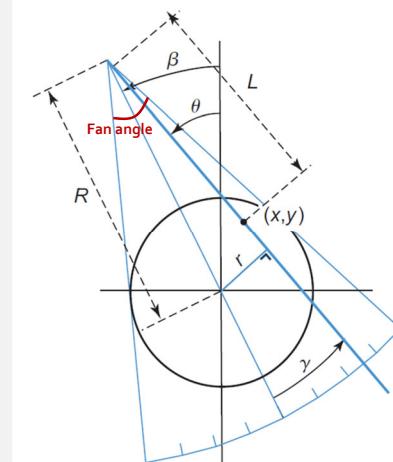
$$p^*(r, \theta) = \int_{-\infty}^{\infty} p(r', \theta) q(r - r') dr'$$

A high-pass filter that removes low-frequency noise.

$$q(r) = \mathcal{F}^{-1}\{|k|\} = \int_{-\infty}^{\infty} |k| e^{i2\pi kr} dk$$

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw> <https://youtu.be/3IqYMn1PYIE?feature=shared> (17:48)

page 29


Fan-beam Backprojection

- A range from **0 to $(\pi + \text{fan-angle})$** is required to include all line measurement.
- Two reconstruction approaches:
 - Rearrange data into parallel geometry with interpolation.
 - An adapted equation for filtered backprojection.

$$\theta = \beta + \gamma$$

$$r = R \sin \gamma$$

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 30

重點回顧

- X光可透過加速熱電子撞擊鎢或鉬靶來產生。
- 制動輻射為連續能譜，而特性輻射則有特定能峰。
- 診斷用的X光與CT，物質主要透過光電效應(photoelectric effect)與康普頓散射(Compton scattering)衰減X光能量。
- 不同世代CT之演進，與射源、接收器之配置、移動方式有關。
- CT造影過程中，會透過不同角度之投影來收集sinogram。
- 取得之sinogram則可透過濾波反投影(filtered backprojection)來進行影像重建。

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 31

Department of Biomedical Imaging
and Radiological Sciences, NYCU

盧家鋒 教授

國立陽明交通大學 生物醫學影像暨放射科學系

alvin4016@nycu.edu.tw

網頁: <http://cflu.lab.nycu.edu.tw>

page 32