

電腦斷層影像基本特性

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 3

本週學習目標

1. 認識電腦斷層影像基本特性

CT數值的定義
影像對比調整
CT影像常見假影

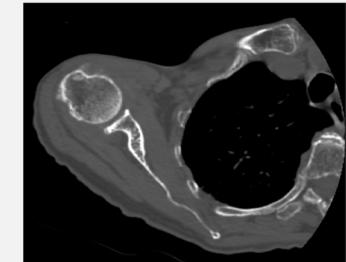
2. 理解電腦斷層影像之臨床應用

電腦斷層神經影像應用
電腦斷層心血管疾病應用
電腦斷層骨科應用

Reference:
Fundamentals of Medical Imaging (2nd Ed.)
Chapter 3

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

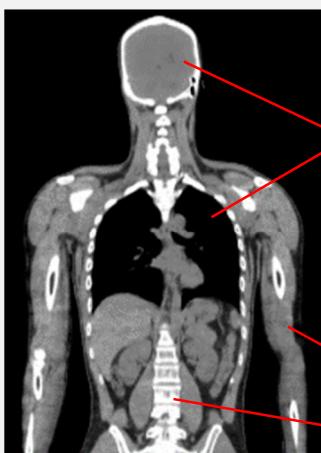
page 2


CT Number: Hounsfield Unit

- The CT number (expressed in Hounsfield unit, HU) is defined as:

$$CT\ number\ (in\ HU) = \frac{\mu - \mu_{H_2O}}{\mu_{H_2O}} \cdot 1000$$

Voxels contains water ($\mu = \mu_{H_2O}$)
CT number = 0 HU

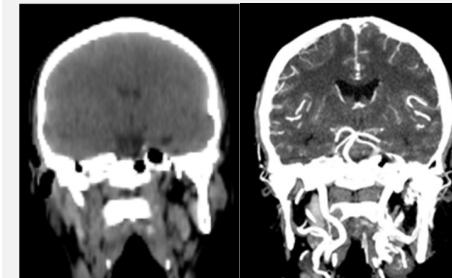

Voxels contains air ($\mu \approx 0$)
CT number = -1000 HU

page 4

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

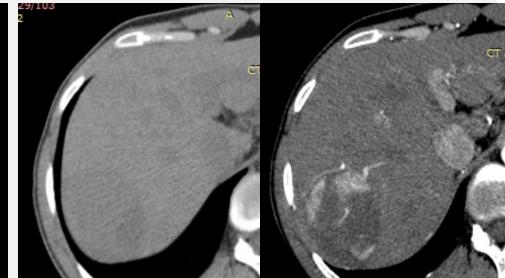
CT Number of Tissues

Substance	Hounsfield Unit (HU)
Air	-1000
Lung	-700
Soft tissue	-300 to -100
Fat	-100 to -50
Water	0
Cerebrospinal fluid (CSF)	15
Blood	+30 to +45
Muscle	+40
Bone	+700 (cancellous bone) to +3000 (dense bone)


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 5

Iodine Contrast Agent

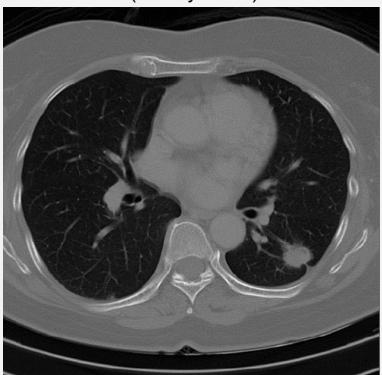


CT Angiography

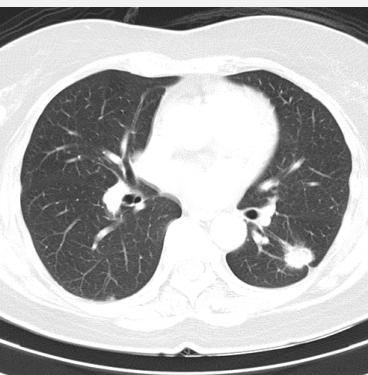
w. contrast injection

Hepatocellular Carcinoma

w. contrast injection
arterial phase

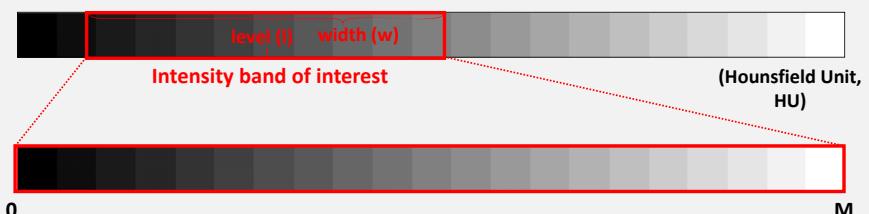

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 6


Image Window and Contrast

Full-range window
(Full-dynamic)

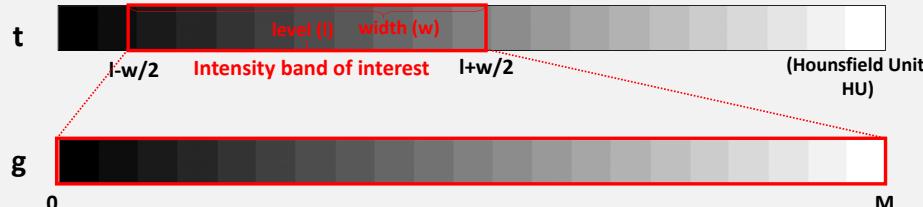
Lung window


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

7

Intensity scaling

- Allowing the observer to focus on specific intensity bands by modifying the image such that the intensity band of interest spans the dynamic range of the display.


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

8

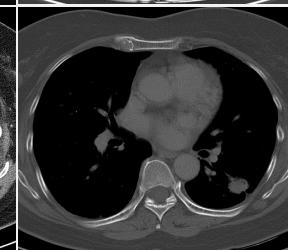
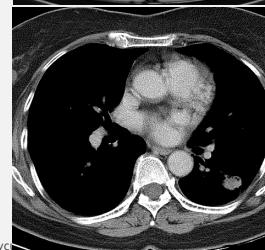
Intensity scaling

$$g_{l,w}(t) = \begin{cases} 0 & \text{for } t < l - \frac{w}{2} \\ \frac{M}{w} \left(t - l + \frac{w}{2} \right) & \text{for } l - \frac{w}{2} \leq t \leq l + \frac{w}{2} \\ M & \text{for } t > l + \frac{w}{2}, \end{cases}$$


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

9

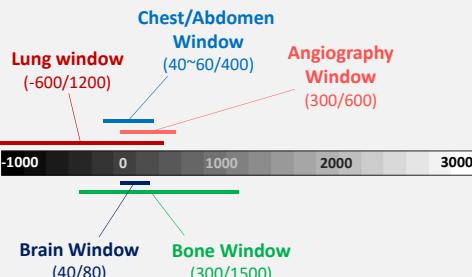
Intensity scaling

Full-range window

Lung Window
(-600/1200)

Chest Soft Tissue
Window
(40/400)


Bone Window
(300/1500)

10

Intensity scaling

Window Level/Width

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

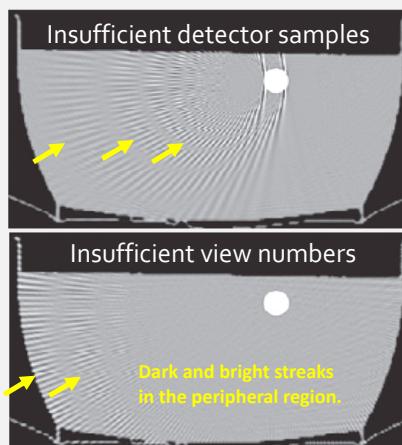
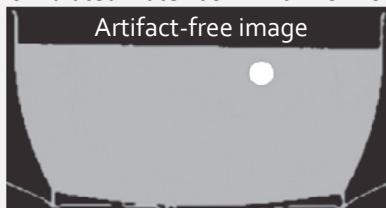
11

Substance	Hounsfield Unit (HU)
Air	-1000
Lung	-700
Soft tissue	-300 to -100
Fat	-100 to -50
Water	0
Cerebrospinal fluid (CSF)	15
Blood	+30 to +45
Muscle	+40
Bone	+700 (cancellous bone) to +3000 (dense bone)

CT Image Artifacts

- Under-sampling 取樣不足
- Beam hardening 射束硬化
- Scatter 散射
- Motion artifact 移動假影
- Windmill artifact 風車假影
- Stairstep artifact 階梯狀假影
- Partial volume effect 部分體積效應

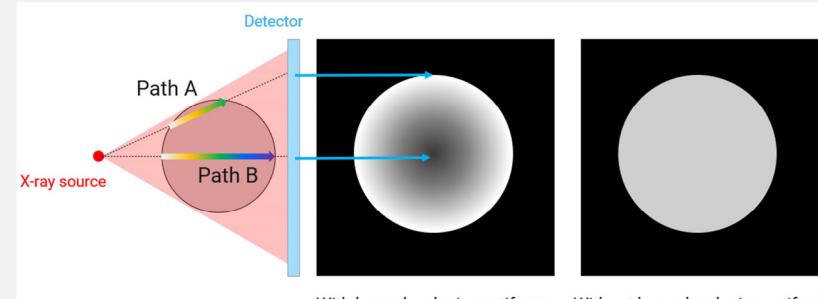
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>



12

Under-sampling

- A minimum number of **detector samples** and **views** are required.
- Under-sampling will cause **aliasing**.

A simulated water bowl with iron rod.

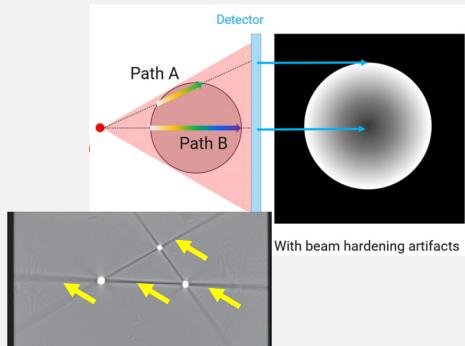

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

13

Beam Hardening

- Low-energy photons are absorbed more as an X-ray beam passes through tissue. → Beam energy increases (hardening).

<https://rigaku.com/products/imaging-ndt/x-ray-ct/learning/blog/what-is-beam-hardening-in-ct>


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

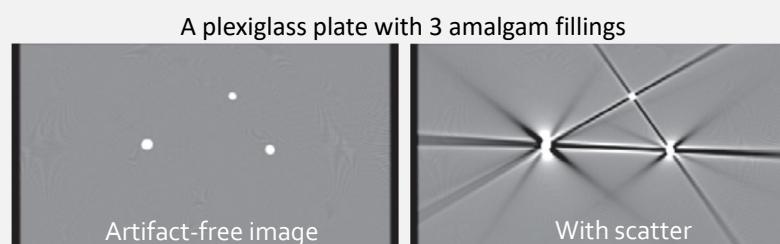
14

Beam Hardening

- The difference in the path length is wrongly translated into a difference in density because of beam hardening.

	Path A	Path B
Path length	Short	Long
Beam hardening	Less hardening	More hardening
Resulting X-ray energy	Low	High
Calculated absorption rate	High	Low
Reconstructed density	High (bright)	Low (dark)

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

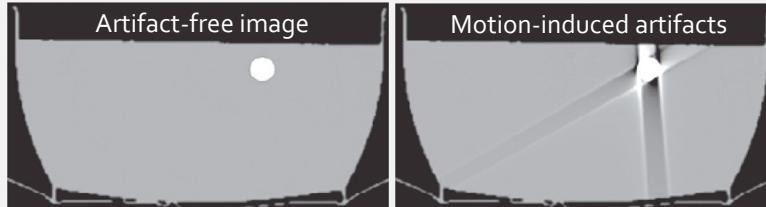

<https://rigaku.com/products/imaging-ndt/x-ray-ct/learning/blog/what-is-beam-hardening-in-ct>

15

Scatter

- Not all photons that arrive at the detector follow a straight path from the X-ray tube.
- Typically, up to 30% of the detected radiation is due to scatter.
- Scatter yields **streak artifacts**.

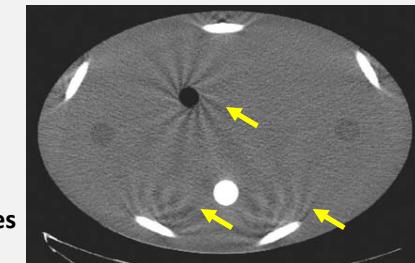
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


16

Motion artifact

- A short object movement during acquisition causes inconsistent measurements and two streaks.
- One links the object to the X-ray tube at movement and another to its start-stop position.

A simulated water bowl with iron rod.


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

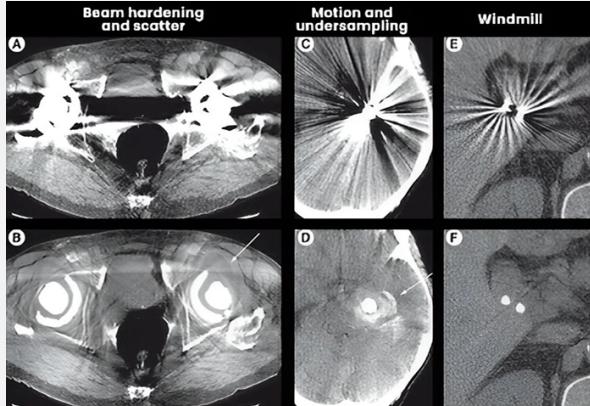
17

Windmill artifact

- The windmill artifact (also called **bearclaw artifact**) is a z-aliasing artifact that occurs primarily in helical cone-beam CT.
- The amount of blur introduced by this interpolation process changes as a function of view angle due to the helical motion.

Black and white spokes

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


18

CT Image Artifacts

Hip replacement Aneurysm coil Cholecystectomy clips

With artifacts

<https://www.medical-professionals.com/en/understanding-ct-artifacts-a-comprehensive-guide/>

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

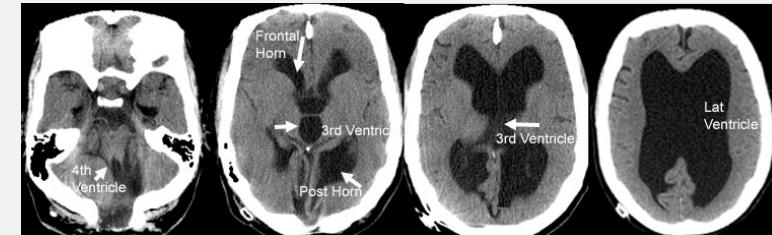
page 19

電腦斷層之臨床應用

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 20

Neurological CT Scan

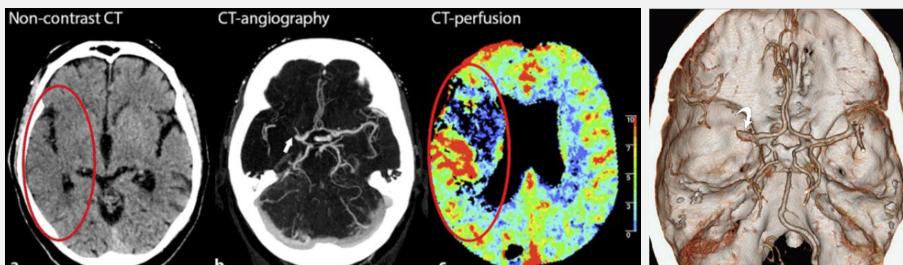


- Hydrocephalus
- Blood clots or stroke
- Traumatic brain injury
- Aneurysms or other vascular abnormalities
- Brain tumors or cysts
- Epilepsy
- Herniated spinal discs
- Multiple sclerosis

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

21

CT in Obstructive Hydrocephalus

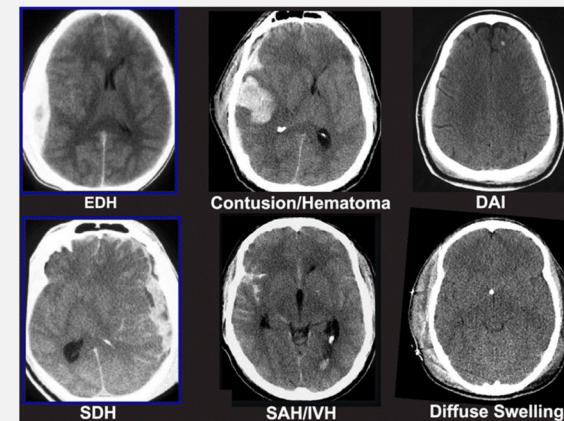

- CT scans without contrast show enlargement of lateral and third ventricles, but not the fourth ventricle, due to aqueductal stenosis.
- Sulci and gyri are flattened against skull and are effaced.

https://www.stritch.luc.edu/lumen/meded/radio/curriculum/neurology/hydrocephalus_2013.htm

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 22

CT in Ischemic Stroke

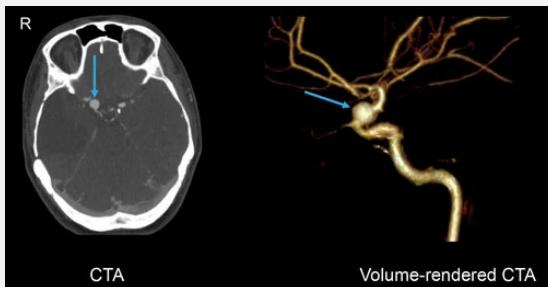


- (a) Early signs of ischemic stroke (red oval);
- (b) CT angiography with occlusion (white arrow) of the proximal middle cerebral artery;
- (c) CT perfusion showing perfusion deficit in the territory of the right middle cerebral artery (red oval).

https://www.researchgate.net/figure/Head-computed-tomography-CT-images-of-the-patient-at-admission-and-at-follow-up-Top_fig1_325461408

page 23

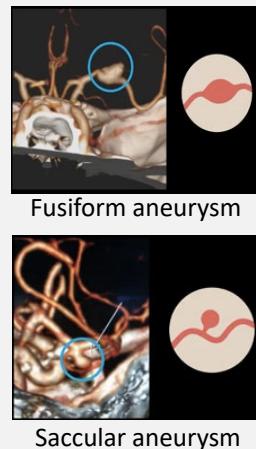
CT in Traumatic Brain Injury



- EDH: epidural hematomas
- DAI: diffuse axonal injury
- SDH: subdural hematoma
- SAH: subarachnoid hemorrhage
- IVH: intraventricular hemorrhage
- Diffuse brain swelling

https://www.researchgate.net/figure/Heterogeneity-of-severe-traumatic-brain-injury-TBI-Computed-tomography-CT-scans-of_fig2_12311521

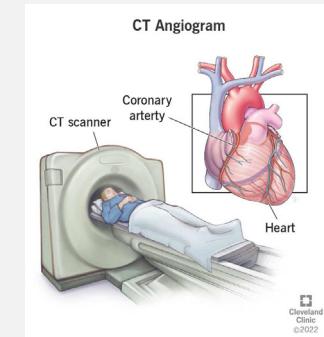
page 24


CT in Aneurysms

- An unruptured fusiform aneurysm of the distal right carotid artery.

<https://www.medmastery.com/guides/brain-ct-clinical-guide/common-locations-aneurysms-brain-computed-tomography-ct-scans>

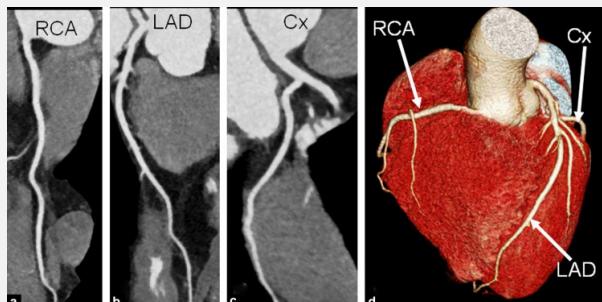
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


page 25

Cardiac CT Scan

Coronary artery disease (CAD)

- Cardiac Computed Tomography Angiography (CCTA)
- Calcium score


<https://my.clevelandclinic.org/health/diagnostics/16899-coronary-computed-tomography-angiogram>

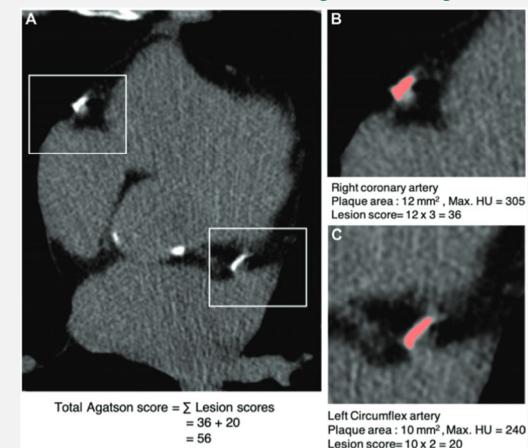
26

Cardiac CT Angiography (CCTA)

$$\text{Pitch} = \frac{\text{Table Travel per Rotation}}{\text{Beam Width}}$$

Images of excellent image quality using the prospective ECG-triggered (flash spiral technique) coronary CTA (pitch 3.4, 68 mL at 5.5 mL/s).

Curved reformation images

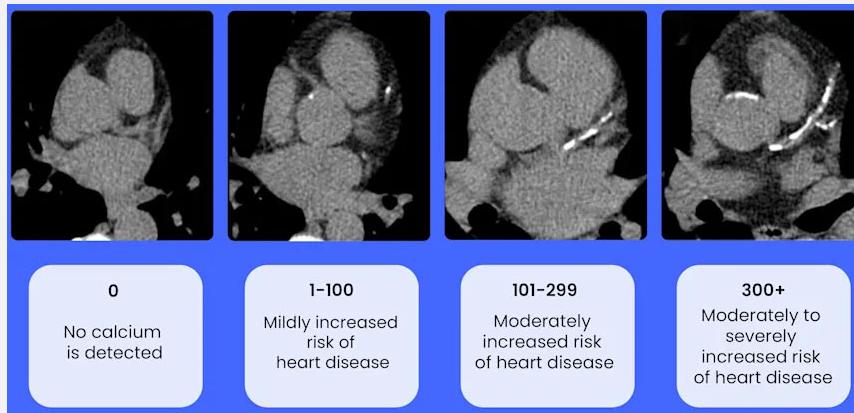

Volume rendering

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

Diagnostic and Interventional Imaging, 97(4): 461-469, 2016.

page 27

CT for Coronary Artery Calcium Scoring


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

- Agatston score**
= plaque area × attenuation-weighting factor
- The CAC Consortium suggests that the CAC score is useful in predicting the risk of cardiovascular events and disease-specific mortality.

RadioGraphics, 42:947-967, 2022.

page 28

CT for Coronary Artery Calcium Scoring

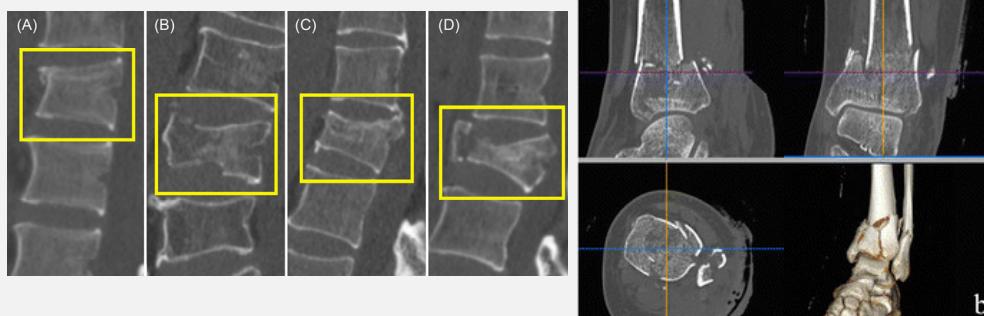
<https://www.healthcentral.com/condition/high-cholesterol/coronary-calcium-test>

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 29

Orthopedic CT Scan

- Fracture Detection and Evaluation
- Joint and Bone Conditions
- Spinal Conditions
- Trauma and Sports Injuries

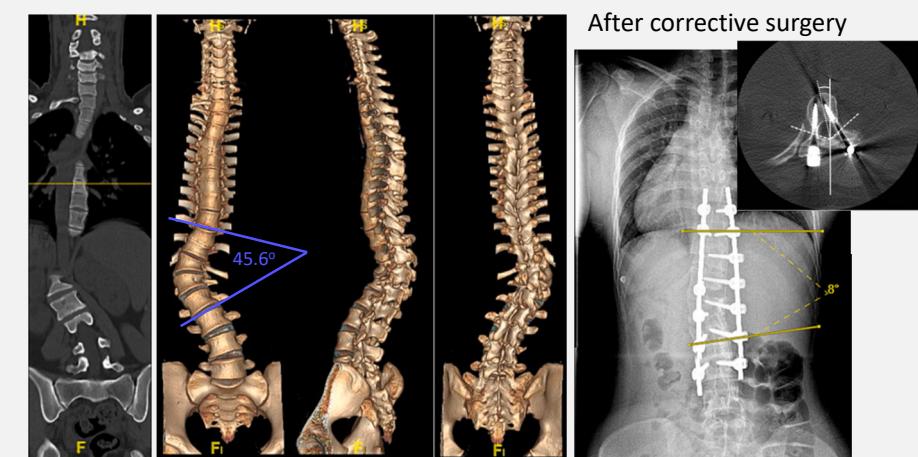


<https://www.ganeshdiagnostic.com/blog/ct-scans-and-orthopedic-imaging-a-comprehensive-guide>

30

CT in Fracture Detection

Acute vertebral body fractures



<https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2023.1132725/full>
https://www.researchgate.net/figure/D-CT-scan-a-3D-Volume-rendering-b-3D-Printed-Replica-of-an-ankle-fracture-with-fig6_307615840

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 31

CT in Congenital Scoliosis

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

International Journal of Surgery Case Reports, 111:108843, 2023.

page 32

重點回顧

- CT數值(HU)是以組織與水的衰減係數對比來表現。
- 空氣之CT數值約為-1000 HU，水為0 HU。
- 選擇適合觀察目標組織的window，將有助於病灶偵測。
- CT影像會因為造影條件、移動、金屬、植人物而產生各類型之假影(例如：streak artifacts, windmill artifacts,...)。
- CT用於神經學檢查，可幫助急重症診斷(水腦症、顱內出血、缺血性中風、血管瘤,...)。
- CT用於心血管檢查，可幫助冠狀動脈狹窄與鈣化分數的評估，有效協助治療。
- CT用於骨科學檢查，可幫助骨頭、脊柱、關節等的診斷與治療。

**Department of Biomedical Imaging
and Radiological Sciences, NYCU**

盧家鋒 教授

國立陽明交通大學 生物醫學影像暨放射科學系

alvin4016@nycu.edu.tw

網頁: <http://cflu.lab.nycu.edu.tw>