

磁振造影原理與設備

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 3

本週學習目標

1. 認識磁振造影原理與設備

基本磁振原理
磁振造影主要設備元件

2. 了解磁振影像重建概念

組織磁振特性 → 影像對比
空間編碼 → 位置資訊
磁振造影波序簡介

References:

- Fundamentals of Medical Imaging (2nd Ed.) Chapter 4
- MRI The Basics (4th Ed.)
- MRI in Practice, (5th Ed.)

page 2

Nobel Prize in Physiology or Medicine 2003

- The Nobel Prize in Physiology or Medicine 2003 was awarded jointly to Paul C. Lauterbur and Sir Peter Mansfield for their discoveries concerning **magnetic resonance imaging (MRI)**.

Paul C. Lauterbur

Sir Peter Mansfield

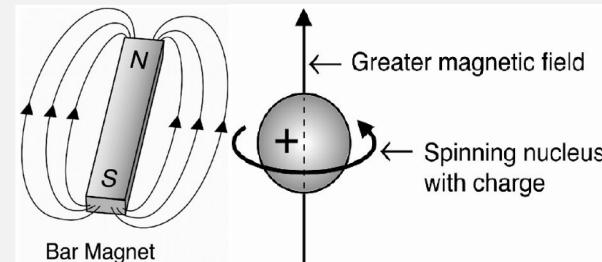
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

<https://www.nobelprize.org/prizes/medicine/2003/summary/>

page 4

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 5



Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

Spins and electromagnetic field

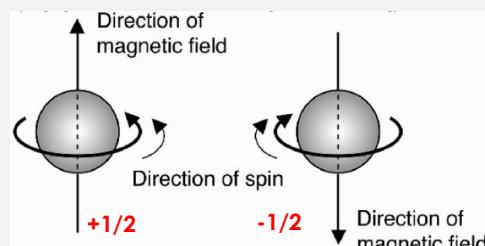
- Felix Bloch (Stanford University, Nobel prize in physics, 1952)
 - Any spinning charged particle (such as the hydrogen nucleus) creates an electromagnetic field.

Magnetic dipole moment (MDM)

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 6

Quantum theory: Energy levels



- The **hydrogen nucleus** (a proton) has a **spin quantum number (S)**

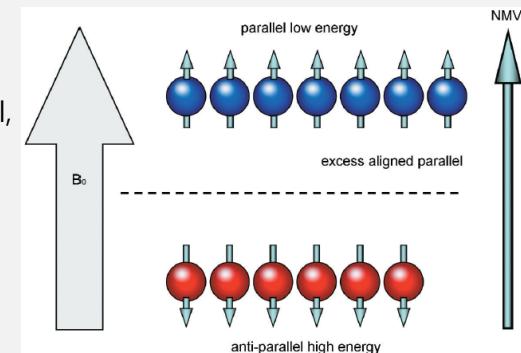
$$S(^1H)=1/2$$

- The number of energy states of a nucleus

$$\# \text{ of energy states} = 2S+1 \text{ (for } ^1H = 2)$$

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 7


Net Magnetic Vector (NMV)

- With B_0 , protons line up and approximately half spin-up (parallel, low energy) and half spin-down (anti-parallel, high energy).

- About one in a million more protons point in the direction of B_0 .

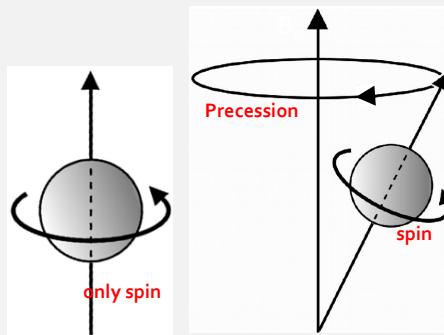
- ppm (parts per million)

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 8

Precession 旋進

- With B_0 , the proton not only spins about its own axis, but also precesses about the axis of the B_0 .


Larmor equation (frequency)

$$\omega_0 = \gamma B_0$$

γ is gyromagnetic ratio (MHz/T)

For B_0 from 1.5T \rightarrow 3T
 $\omega = 42.6 \times 1.5T = 63.9$ MHz
 $= 42.6 \times 3.0T = 127.8$ MHz

For positive γ , the precession is clockwise.

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

NBA

page 9

Spin and Precession

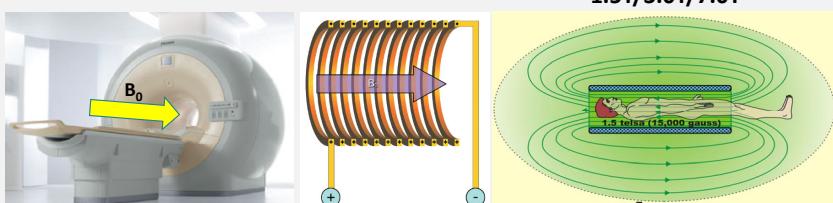
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

- Wheel rolling: spin
- Gravity: B_0
- Spiral precession

[Magritek videos on youtube \(6:33\)!!](#)

NBA

page 10


Main Magnet and Magnetic Field B_0

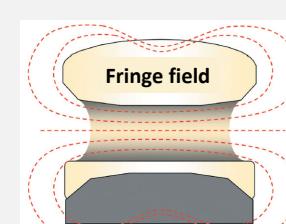
NBA

Superconducting magnets (the most common today)

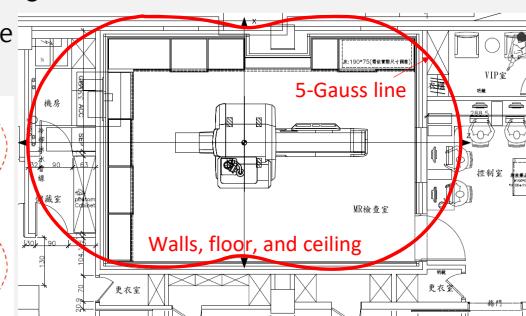
- operate near absolute zero temperature
- generate a high B_0 without generating significant heat
- require cryogens (interior 4°K liquid helium; outer 77°K liquid nitrogen), very expensive !!

1 Tesla (1T) = 10000 Gauss (0.5 Gauss for earth's magnetic field in average)

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


page 11

Shielding 屏蔽



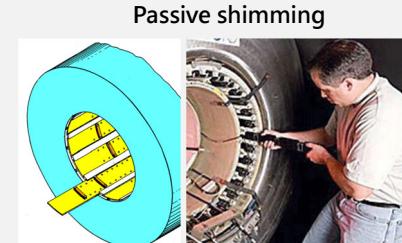
NBA

- Passive shielding: scanner room with galvanized steel plates.
- Active shielding: additional solenoid electromagnets located around the outside of the main magnet coil.
- 5 Gauss line – safety zone

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 12

Shimming 補墊


- **Passive shimming**

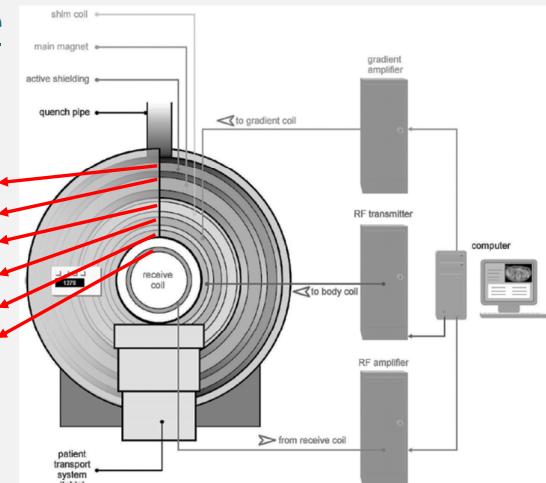
- involving the use of ferromagnetic materials, typically iron or steel, placed along the inner bore of the magnet.

- **Active shimming**

- electromagnetic coils to shim the system for each patient or even each sequence.

Magnetic uniformity should be **<1~5 ppm (parts per million)**.

12-24 sliding trays arranged symmetrically with metallic shims
<http://mr/questions.com/passive-shimming.html>


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 13

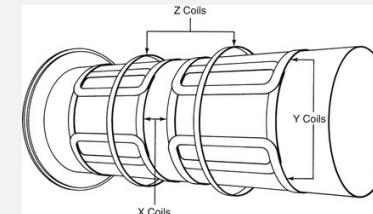
MRI Hardware Setup

- Outer → inner
- Active shielding
- Main magnet
- Shim coil
- Gradient coil
- Body (transmit) coil
- Receive coil

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 15

Gradient and Radiofrequency (RF) Coils



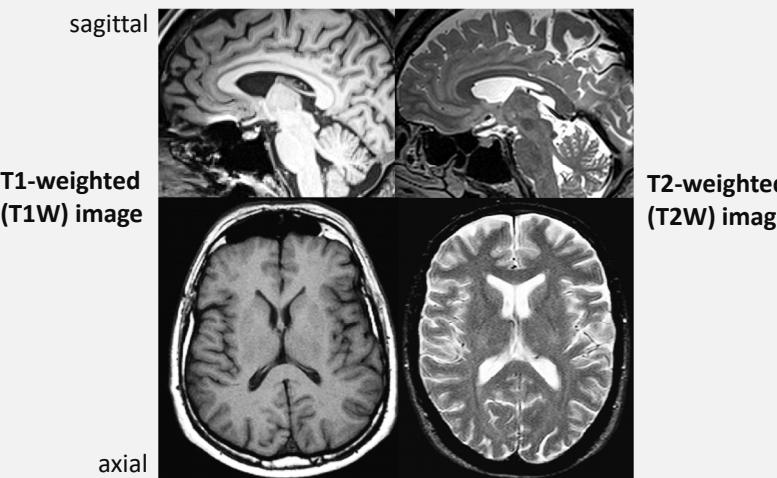
- **Transmit/receive RF coils 射頻線圈**

- A transmitter coil transmits an RF pulse.
- A receiver coil receives an RF pulse.

- **Gradient coils 梯度線圈**

- Intentional magnetic perturbation for spatial encoding

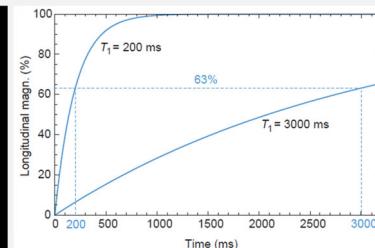
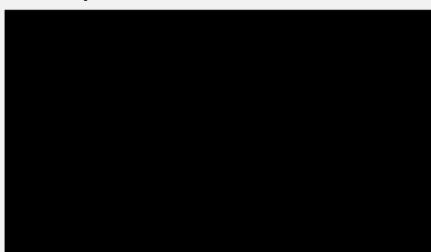
Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


page 14

磁振影像重建概念

page 16

Image and Tissue Contrast

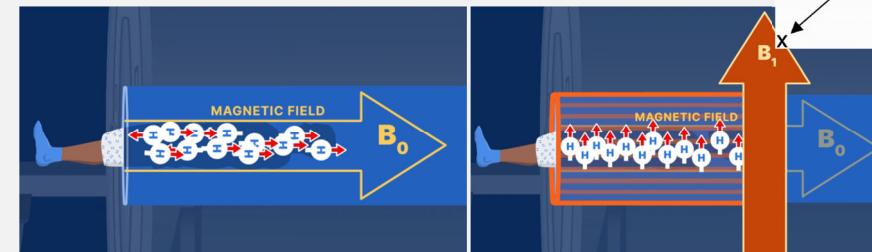


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 17

T1 Relaxation

- During relaxation, hydrogen nuclei give up absorbed RF energy and the NMV returns to B_0 direction.
- Recovery of **longitudinal magnetization** (M_z) → **T1 recovery**
- Spin-lattice relaxation

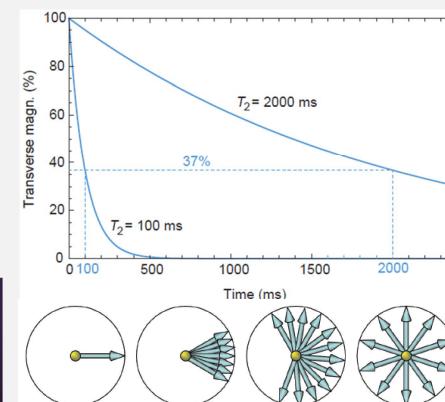
<https://www.youtube.com/watch?v=lKp67lqQjH4>


Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 19

Excitation by Radiofrequency (RF) Pulse

- The RF pulse (B_1 field) causes a spiral downward motion of the protons → flipping
- By introducing the B_1 , the spinning protons will then be in phase → creates transverse magnetization



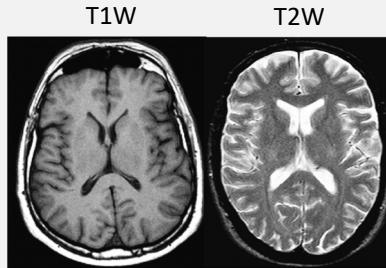
page 18

T2 Relaxation

- The magnetic moments of hydrogen lose coherency due to out of phase.
- Decay of **transverse magnetization** (M_{xy}) → **T2 decay**
- Spin-spin relaxation

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 20


T1 and T2 Characteristics: Brain Tissues

- T1 (longer T1, slower M_z recovery)
 - Cerebrospinal fluid (CSF) > Gray matter (GM) > White matter (WM)
- T2 (longer T2, slower M_{xy} decay)
 - CSF > GM > WM

	T1 (msec)	T2 (msec)	N(H)
White matter	510	67	0.61
Gray matter	760	77	0.69
Edema	900	126	0.86
CSF	2650	180	1.00

1.5T

Chia-Feng Lu, <http://cfliu.lab.nycu.edu.tw>

page 21

Image Construction

1. Slice selection

(only excite spins on a specific slice location)

2. In-plane spatial encoding

(differentiate spin signals at different locations)

Chia-Feng Lu, <http://cfliu.lab.nycu.edu.tw>

page 23

T1 and T2 Characteristics: Body Tissues

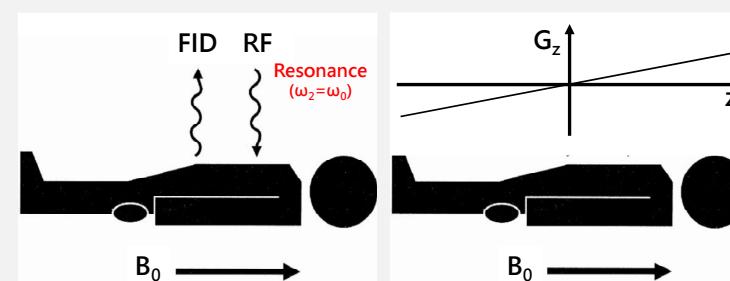
- T1 (longer T1, slower M_z recovery)
 - H_2O > Solid tissue > Fat
- T2 (longer T2, slower M_{xy} decay)
 - H_2O > Fat > Solid tissue

	T1 (msec)	T2 (msec)
Water	4000	2000
Muscle	900	50
Liver	500	40
Fat	250	700

1.5T

T1W

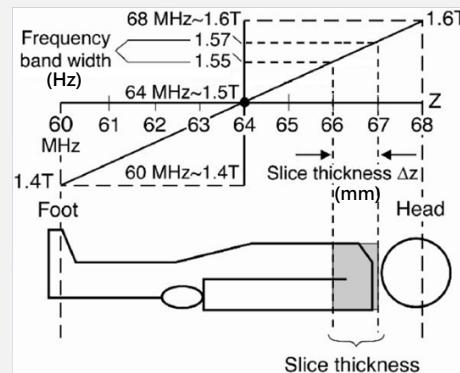
T2W


Chia-Feng Lu, <http://cfliu.lab.nycu.edu.tw>

page 22

How to Selectively Excite a Slice?

- Create a variation in the field along a specific axis in linearly increasing or decreasing by the gradient coil.

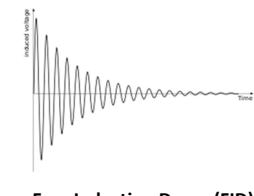

Chia-Feng Lu, <http://cfliu.lab.nycu.edu.tw>

page 24

Slice Selection

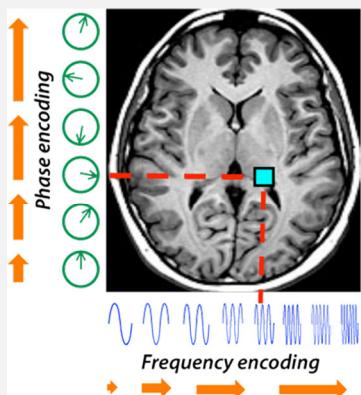
- We can excite one slice by an RF pulse with a specific frequency range.
- This range of frequencies (bandwidth) determines the **slice thickness**.
- The center frequency determines the **slice location**.

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>


page 25

Received Signals

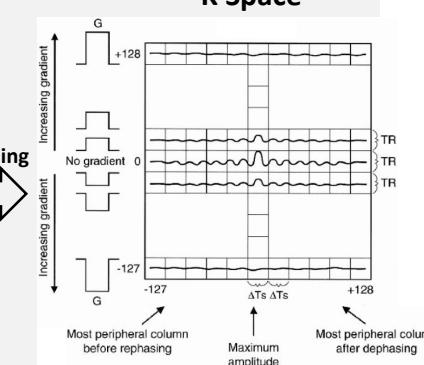
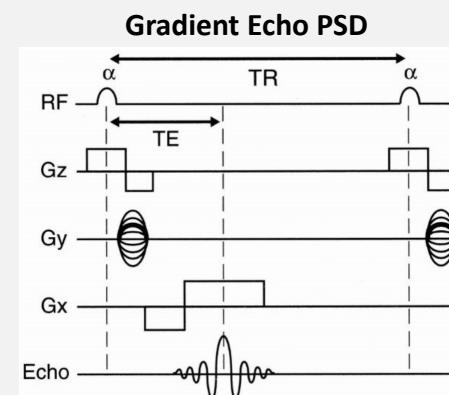
- The received signal is the mixture of the oscillating signals from all excited spins in the selected image plane.
- Without spatial encoding, we can not reveal the spatial information.


0	$\cos\omega_0 t$	$\cos\omega_0 t$
$\cos\omega_0 t$	$2\cos\omega_0 t$	0
$2\cos\omega_0 t$	0	$\cos\omega_0 t$

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 26

In-Plane Spatial Encoding

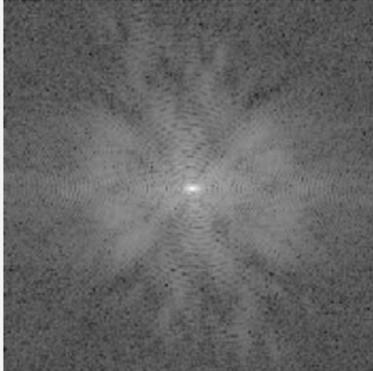



<https://mr/questions.com/how-to-locate-signals.html>

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

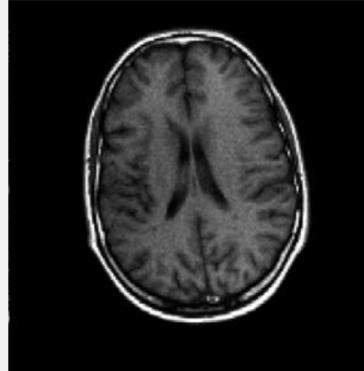
page 27

Pulse Sequence Diagram (PSD)



Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 28


K Space & Inverse Fourier Transform

K Space

2D FT⁻¹
→

Magnitude Image

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

重點回顧

- 自旋的帶電粒子(例如：氫核)會產生微小的磁場。
- 外加高磁場 B_0 (1.5~7T)，可產生旋進的靜磁矩(NMV)。
- 純予相同共振頻率的RF脈衝，將能激發靜磁矩至高能狀態。
- 關閉RF脈衝後，物質將會進行T1與T2 relaxation，並據此產生出不同訊號表現。
- 為有效辨識訊號來源位置，需要進行選擇性切面激發、相位編碼與頻率編碼的步驟，取得K space資訊。
- 最終，透過二維反向傅立葉轉換來取得磁振影像。
- 磁振造影設備包含五大重要線圈：屏蔽線圈、主磁體線圈、補墊線圈、梯度線圈、射頻線圈。

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 30

Department of Biomedical Imaging
and Radiological Sciences, NYCU

盧家鋒 教授

國立陽明交通大學 生物醫學影像暨放射科學系

alvin4016@nycu.edu.tw

網頁: <http://cflu.lab.nycu.edu.tw>

Chia-Feng Lu, <http://cflu.lab.nycu.edu.tw>

page 31