
Functional magnetic resonance imaging (fMRI) is
becoming a popular non-invasive tool for imaging
functionally active brain regions in health and in
disease. The commonest method of fMRI is blood
oxygenation level-dependent (BOLD) imaging, which
has dominated this field since its discovery [1]. BOLD
fMRI employs haemoglobin as a convenient
endogenous contrast agent, relying on the
magnetization difference between oxy- and
deoxyhaemoglobin to create the fMRI signal [2,3].

fMRI BOLD therefore measures neuronal activity
indirectly via its assumed haemodynamic correlate.
The accurate interpretation of the BOLD signal is
crucially dependent on fully characterizing the
nature of the underlying neural activity that gives
rise to the haemodynamic response, and the way in
which these two aspects of neurobiology are linked –
known as neurovascular coupling. Despite the recent
increase in fMRI-related publications, the exact
nature of this coupling remains largely unknown,
with regard to both the nature and origin of the
communicating signal between neurone and vessel
[4,5]. Other determinants of the BOLD response
include the nature of the haemodynamic response
itself, and the way in which this response is detected
by the MRI scanner (Box 1). This article examines
our current understanding of the neural basis of the
fMRI BOLD signal, and ways in which it might be
improved.

Empirically, without a corresponding index of
neuronal electrical activity, any changes in BOLD
signal observed upon stimulation might have
occurred through changes in neuronal activity, the
coupling mechanism, or both. In order to examine
this, there is clearly a need to measure changes in

neuronal activity and haemodynamic responses in
parallel or, ideally, simultaneously. Significant
advances have been made in this regard by Logothetis
and colleagues, who have pioneered the simultaneous
acquisition of electrical and fMRI data in primates.
Their recent work has shown that the BOLD response
directly reflects an increase in neural activity,
correlating in particular with local field potential
(LFP) measures, which represent the synchronized
synaptic inputs of a given neural population [6]. This
is in agreement with recent data that show a
significant correlation between fMRI BOLD
responses and evoked potentials in humans [7], and
the literature regarding evoked field potentials and
cerebral blood flow in animals [8–13].

Evoked potentials (and similarly, LFPs) are
mainly attributed to extracellular currents from
summated postsynaptic potentials [14–17], and thus
represent a measure of population synaptic activity,
rather than neuronal firing rates. Nevertheless, by
comparing human fMRI and primate single-cell data,
important findings in the visual cortex have been
interpreted as suggesting that human fMRI BOLD is
also proportional to the aggregate neuronal firing rate
[18,19]. This was estimated as 0.4 spikes/s per
neurone for each 1% fMRI signal change in area V1,
and 9 spikes/s per neurone in V5.

Because the BOLD signal is dependent on many
physiological and biophysical parameters (Box 1),
which could vary between different species, these
relationships can be considered as semi-
quantitative. The effect of different anaesthetics
used in animal studies on neurovascular coupling is
also a potential variable (for example, in rats,
α-chloralose decreases resting metabolic and
presumably cellular activity [20]). However, it is
interesting to note that recent papers [6,7,18,19]
have found a predominantly linear correlation
between neuronal activity and haemodynamic
responses (although this is not the case in all animal
experiments [21]). In those cases where non-
linearities were modelled [19], they improved the
relationship in only some cortical areas, suggesting
that these relationships are not influenced by the
nonlinear relationship between metabolic demand
and BOLD signal [22].

Interestingly, there are early reports that both
action potentials [18,19] and synaptic activity
[6–8,12,13] correlate with the fMRI BOLD signal, so
the relationship between these two types of neuronal
activity merits further consideration. Empirical
evidence suggests that the action potential firing
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activity of cortical cells contributes little to the
metabolic demand of the brain, estimated maximally
as 3% of the resting cortical energy consumption
[23]. Thus, even if neuronal firing rate doubled, the
effect on local metabolism would be small compared
with the apparent changes recorded in imaging
experiments. By comparison, the major determinant
of cortical oxygen and glucose consumption is the
re-establishment of ionic concentrations via the
Na+–K+ ATPase after synaptic activity, defined here
in its broadest terms [24–26]. In the rat, for example,
up to 95% of regional cerebellar blood flow increases
might be dependent on postsynaptic activity [11].
Thus, the major energy-demanding cortical process

is synaptic activity, to which one would expect fMRI
BOLD signals to be ultimately related. It is even
feasible that, in principle, fMRI activations might be
observed in areas with minimal recordable
single-cell activity. These data emphasize the
apparent dominance of synaptic activity, but how
does this relate to simultaneous cellular spiking
activity itself?

Relevance of the relationship between action potentials

and synaptic activity

A neuronal action potential can be defined as
occurring when the membrane potential reaches
threshold by depolarization, which is, in turn,
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Box 1. The haemodynamic response and fMRI BOLD signals
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The blood oxygenation level-dependent (BOLD)
signal can be thought of as having several key
determinants (shown from left to right in Fig. I): the
neuronal response to a stimulus; the complex
relationship between neuronal activity and triggering
a haemodynamic response; the haemodynamic
response itself; and the way in which this response is
detected by a magnetic resonance imaging (MRI)
scanner.

The many experimental parameters in functional
MRI (fMRI) scanning that affect the amount of BOLD
signal observed by any particular scanner include
magnetic field strength, echo time and the type of
imaging technique involved. For example, a 1% BOLD
signal at an echo time of 30 ms is equivalent to 2% at
an echo time of 60 ms, even if the haemodynamic

response is constant. BOLD imaging is also
susceptible to various artefacts, including head
motion, ghosting and field in-homogeneities [a].
Together, many factors will affect the amount by
which the BOLD response reflects a given
haemodynamic response, which makes the response
difficult to quantify.

Much work has been carried out to identify the
nature of the haemodynamic response itself, in
particular by Friston et al. [b], furthering the Balloon
model of Buxton et al. [c].The vascular basis of the
BOLD signal is predominantly believed to be a
relative imbalance between increases in local
cerebral blood flow (CBF) and concurrent (albeit
smaller) increases in oxygen metabolism,
which causes a transient drop in the
deoxyhaemoglobin:oxyhaemoglobin ratio, and is
discussed in detail elsewhere [c–e]. Other
physiological factors that also contribute to changes
in deoxyhaemoglobin concentration include blood
volume, vascular geometry, haematocrit and basal
oxygenation levels [f,g]. These important initial

Fig. I. The BOLD signal has several constituents: (1) the neuronal
response to a stimulus or background modulation; (2) the complex
relationship between neuronal activity and triggering a
haemodynamic response (termed neurovascular coupling); (3) the
haemodynamic response itself; and (4) the way in which this
response is detected by an MRI scanner.



determined by the integration of incoming
postsynaptic potentials, whether excitatory or
inhibitory (EPSPs or IPSPs, respectively). Even if
EPSPs summed linearly, then at least 75 afferent
neurones would be needed to fire simultaneously for
the10 mV change in depolarization that is needed for
a single postsynaptic neurone to reach firing
threshold [27]. Simultaneous IPSPs would also
decrease the probability of cell firing (Box 2). Spiking
activity thereafter adapts quickly, whereas synaptic
LFP activity might be maintained during stimulus
presentation [6], suggesting that the relationship
between cortical synaptic activity and cell spiking
activity is difficult to standardize and quantify, and

that it could vary over time and between cortical
areas. As fMRI BOLD inherently measures relative
changes (from an active versus resting state), rather
than absolute measurements, the relative
contributions of these various activities are currently
unclear.

Logically, however, one would expect an
approximately linear relationship between action
potential firing rate and the related synaptic
metabolic activity [28] to prevent information loss
between axon and dendrite of the same neurone.
Synaptic activity should therefore correlate with the
firing rates of the presynaptic neurone, but not
necessarily the postsynaptic neurone. If this is true
– and the relationship between synaptic activity and
BOLD signal is linear – then we would expect the
BOLD signal to be approximately linearly
correlated to spiking activity. Ultimately, this
variable and circular relationship between synaptic
activity and action potentials might also be
important in the spatial resolution of fMRI (Box 1)
because sub-threshold activity often extends further
in space than active firing. This might serve to
explain, or confound, the intrinsic spatial 
smoothing within the fMRI signal, which has been
described as how ‘the brain waters the whole garden
for the sake of a single flower-bed’ [29]. So what
potential effect does all this have upon the activated
territories?

fMRI BOLD detects population activity

The best current resolution of fMRI BOLD is at the
level of one cortical column, which contains ∼ 105

neurones [30]. Most fMRI scanning paradigms will
compromise shorter acquisition times with a lower
spatial resolution of ∼ 8–50 mm3 (1–3mm3

dimensions), containing at least 106 neurones. Even
within an individual voxel, fMRI BOLD will therefore
measure the haemodynamic result of a population of
cells. As a result of this scale, conventional BOLD
imaging (and similarly, scalp electrophysiology)
might focus on the many neurones firing at initially
low rates, whose individual firing rates vary little
with activation, but cause the largest changes in
evoked population activation by summation [31]. It is
currently unclear whether fMRI can differentiate
between these small activity changes in large cellular
populations, and large changes in small populations,
or how this balance varies with task or cortical site.
Neuronal action potentials are best recorded by
conventional single or multicellular recordings, but
these recordings will favour those relatively few
neurones that show the greatest changes in firing
rate. Taking things to the next stage, a further
problem is how to relate the spiking or synaptic
activity of these selectively activated neurones to the
ensemble synaptic activity of a neuronal population,
in particular in the context of combined excitatory
and inhibitory synaptic connections [32] (Box 2). The
relationship of the haemodynamic response to these
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factors aside, the haemodynamic response can vary widely across cortical
areas and between species. Different aspects of the haemodynamic
response might change on different timescales, and might have different
neural determinants and different consequences for the BOLD signal.

It is also widely recognized that the BOLD signal occurs not only at the
capillary level but also at large draining veins, potentially a few centimetres
downstream from the neuronally active regions [f,h]. By implication, such
signal changes would be spatially displaced from the activated neural
tissue. Thus, the spatial resolution of BOLD-based fMRI is clearly more
likely to be limited by the microvascular density, which will always be lower
than that of neurones [e] and is hampered by large vessel contributions,
known as the ‘brain versus vein’ debate [i]. Spin-echo fMRI techniques
minimize these venous contributions and thus might be useful in resolving
fMRI BOLD more precisely to its neural origins, but at the expense of signal
to noise [j,k]. At higher field strengths, the capillaries exert a larger effect on
image intensity [l,m]. In combination, these two might therefore become
increasingly helpful.
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differences in firing patterns remains to be
determined.

Another factor in this area of the debate is
whether fMRI BOLD can take into account changes
in overall population or background activity. It is

important that fMRI BOLD has the potential to
include many other functionally significant neuronal
events such as bursts, oscillations and changes in
neuronal synchrony. Global scaling techniques can
minimize the contributions of steady population
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There is currently no evidence that the recycling and repackaging
of neurotransmitters and the restoration of ionic concentrations
after synaptic transmission differs between excitatory and
inhibitory synapses. Because cortical glucose use reflects
presynaptic rather than postsynaptic activity [a], the release of
inhibitory or excitatory transmitters must both be energy-
consuming processes; for example, inhibitory activity results in
an increase in glucose metabolism in the hippocampus [b].

Inhibitory synaptic activity might modulate the functional
magnetic resonance imaging (fMRI) blood oxygenation level-
dependent (BOLD) response by changing metabolic demand, or
might reduce the BOLD response by reducing net spiking
activity. Increases in inhibitory activity demand greater
excitatory input in order to achieve supra-threshold activity, in
other words, more synaptic activity is required for each action
potential fired. The energy required to recycle inhibitory
neurotransmitters might also feasibly cancel out the reduction in
activity of the inhibited postsynaptic cell. However, it is unlikely
that a substantial volume of cortex could sustain a high level of
inhibitory activity, producing a simultaneously low firing rate
and high metabolic rate [c]. The majority of the cortex (70–80%)
consists of pyramidal cells, which are excitatory regular-spiking
neurones, with the remaining non-pyramidal cells being mostly
inhibitory [d,e] (approximately one inhibitory synapse for every
five excitatory synapses [f]). It has been argued that because of
their reduced number, strategically superior location and
increased efficiency [g], there could be lower metabolic demand
during inhibition compared with excitation. Accordingly, one
group has proposed that inhibition, unlike excitation, does not
elicit a measurable change in the BOLD signal [h]. However,
other groups have observed fMRI BOLD signals even under
conditions that appear to involve inhibitory interactions [i]. Both
empirical and theoretical studies suggest that excitatory and
inhibitory neurones are likely to be balanced so that it is unlikely
that one would observe an increase in one without an increase in
the other [j], albeit not in temporal unison [k], because otherwise
no cell would reach threshold. A recent model suggests that
inhibition might increase the BOLD response if there is a low
prevailing level of excitation, but that it can reduce it when
excitation is generally high [l].

The cerebellum provides an interesting opportunity to study
the neural origin of fMRI BOLD, because its principal cortical cells,
the Purkinje cells, are inhibitory. However, in rats, no simple
correlation has been found between blood flow and Purkinje cell
firing [m,n]. Cerebellar blood flow (CeBF) responses are unrelated
to postsynaptic GABA (inhibitory) activity; but are attenuated
when synaptic potentials are abolished by blocking glutamate-
mediated (excitatory) responses. This suggests that excitatory
activity alone provides the basis for the vascular responses
observed, although this is confounded by the simultaneous
activation of inhibitory interneuronal firing. The cerebellum is a

multi-layered structure containing many types of cell, and there
are also several other possibilities that could cause an increase in
blood flow (S-J. Blakemore, PhD thesis, University College
London, 2000). However, these results seem to generalize to
somatosensory cortex [o]. Further investigation into the cellular
basis of haemodynamic change in the cerebellum might address
the contribution of inhibitory firing to the BOLD response. Firing
rates in different areas of cortex with different levels of excitatory
and inhibitory activity might therefore create distinct
relationships between neural activity and the BOLD response.
Pharmacological intervention during fMRI [p] using known neural
(but not directly vascular) drugs, for example, GABA-mediated
inhibitory blockers, might reveal some of the true contributions of
inhibitory and excitatory activity to the BOLD response in cortex-
specific areas.
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firing in order to select out the seemingly more
important local changes, but this might discard
potentially relevant information, because
background modulations might be induced by
important cognitive states such as attention.
Furthermore, arousal and sensory processing could
lead to a qualitative reorganization of neuronal
activity (e.g. desynchronization) caused by synaptic
changes – feasibly without significant changes in net
regional firing activity [23,33–35]. Assuming that
fMRI signals are representative of global synaptic
activity levels, they might indeed be sensitive to
changes in synchronization, provided that the normal
relationship between firing rates and
synchronization is intact [35]. This has a secondary
bearing upon the non-absolute nature of all fMRI
BOLD signals, and the varying relationship between
action potentials and synaptic energy demand. It is
arguable that background modulations induced by

attention could result in reduced or undetectable
relative changes between active and ‘resting’ state,
masking true underlying neuronal changes, although
attentional modulation of fMRI BOLD signals have
been observed [35,36]. It is therefore not necessarily
predictable how fMRI might express stimulus-
correlated activation changes on top of simultaneous
background modulations.

To conclude, fMRI BOLD signals are clearly
dependent on the variability and inter-relationships
of several factors. The debate currently favours a
relatively direct correlation between fMRI signals
and population synaptic activity (including inhibitory
and excitatory activity) with a secondary and
potentially more variable correlation with cellular
action potentials. Further investigation of this
relationship between electrical activity and fMRI
BOLD imaging will be very exciting, with paradigms
targeted specifically at these factors de novo.
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