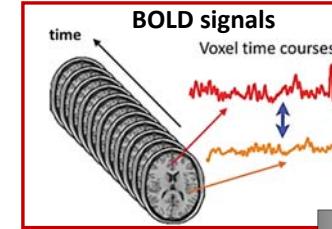


Analysis of Functional Magnetic Resonance Imaging (fMRI) Experimental Design

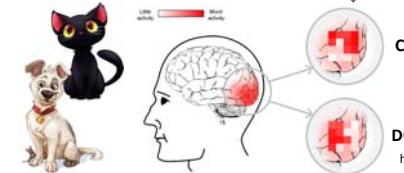
盧家鋒 Chia-Feng Lu, Ph.D.

Laboratory of Neuroimage Biomarker Analysis,
Department of Biomedical Imaging and Radiological Sciences,
National Yang-Ming University
alvin4016@ym.edu.tw
March 5, 2019

Chia-Feng Lu


<http://www.ym.edu.tw/~cflu>

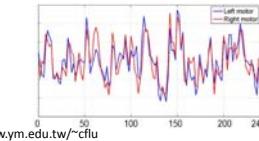
1


Goal of Experimental Design

- To manipulate the participants experience and behavior in some way that is likely to produce a functionally specific neurovascular response.
- What can we manipulate?
 - **Stimulus properties** (what is presented?)
 - **Stimulus timing** (when is it presented?)
 - **Participant instructions** (what do subjects do with it?)

fMRI Analysis

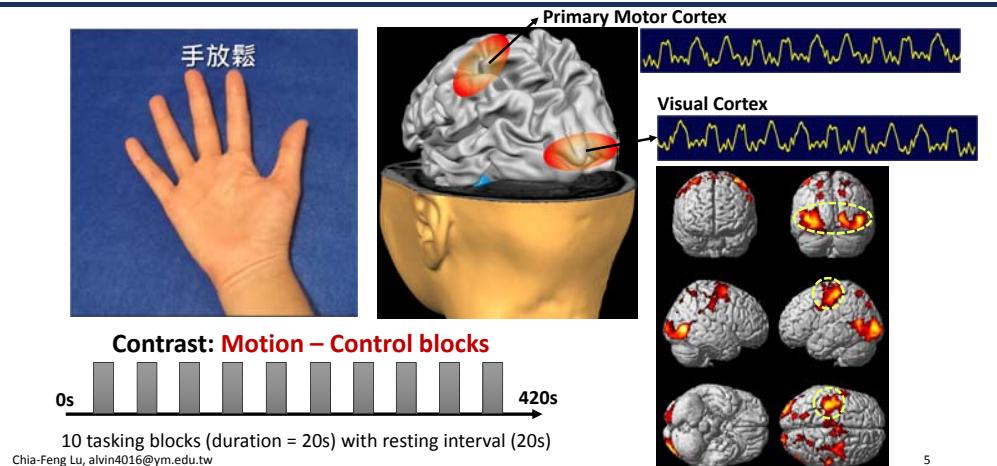
Brain Activity Pattern
(classification or similarity analysis)



Brain Activation
(similarity between local BOLD signal and task design)

$R^2=0.493$

Brain Connectivity
(dependencies of BOLD signals between brain regions)



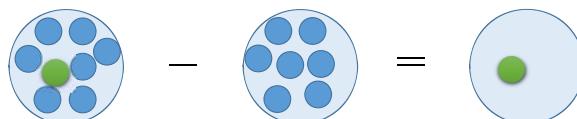
<http://www.ym.edu.tw/~cflu>

Types of Experimental Design

- **Simple Subtraction**
- **Categorical Design**
 - Cognitive subtraction: the assumption of pure insertion
- **Factorial Design**
 - Considering the interaction between multiple factors
- **Parametric Design**
 - Correlating behavior with brain activity

Simple Subtraction

Categorical Design (2/3)

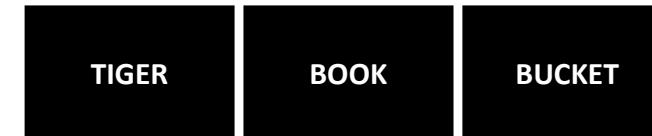

- **Cognitive subtraction:** the assumption of **pure insertion**

Aim

- Neural structures underlying a single process Y (e.g. face recognition)?

Procedure

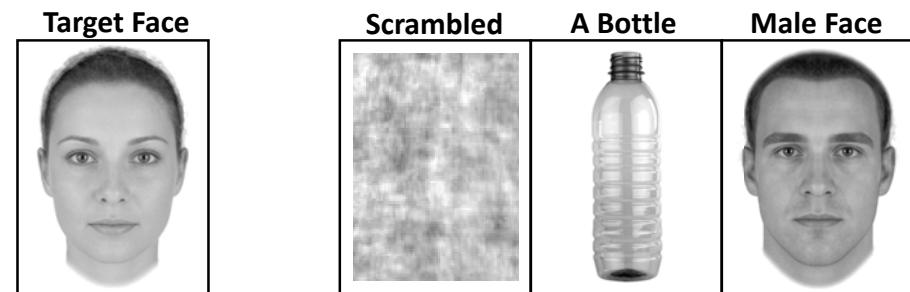
- Contrast: [Task with Y] – [control task without Y] = Y



Categorical Design (1/3)

Comparing the brain activity between stimulus types.

Example:


- **Stimulus:** visual presentation of 12 common nouns.
- **Tasks:** decide for each noun whether it refers to an **animate** or **inanimate** object.

Categorical Design (3/3)

To identify the face recognition area...

Which one is the proper Control stimulus?

Factorial Design (1/2)

- Combining two or more factors within a task and looking at the effect of one factor on the response to other factor.

- Main effects**

- Main effect of task: $(A1+B1) - (A2+B2)$
- Main effect of stimuli: $(A1+A2) - (B1+B2)$

Task (1/2)		Viewing		Naming	
		Stimuli (A/B)	Gray-level	Color	Gray-level
A1	A2			B2	
	B1				

Factorial Design (2/2)

- Combining two or more factors within a task and looking at the effect of one factor on the response to other factor.

- Interaction of task and stimuli**

- $(A1 - B1) - (A2 - B2)$

Does not make the assumption of pure insertion.

Task (1/2)		Viewing		Naming	
		Stimuli (A/B)	Gray-level	Color	Gray-level
A1	A2			B2	
	B1				

Parametric Design

Exploring systematic changes in brain responses according to some performance attributes of the task.

Parametric designs use **continuous rather than categorical design**.

For example, we could **correlate response times with brain activity**.

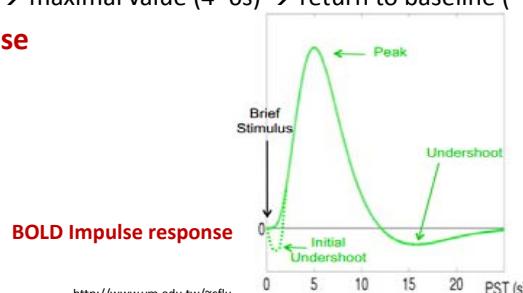
4 - 1 = 3	36 - 17 = 18	116 - 22 = 96
-----------	--------------	---------------

Stimulus Delivery

- MRI compatible hardware**

- In-room viewing monitor/projector
- Goggles with integrated EyeTracking cameras
- Audio system
- Response pads/grips/buttons
- Trigger/synchronization box (MR scanner \leftrightarrow stimulus presentation software)

- Stimulus presentation software**


- E-prime (BIOPAC Systems)
- Presentation (Neurobehavioral Systems)

BOLD and HRF characteristics

- The relationship between neural activation and BOLD signal
 - Neuronal firing and postsynaptic potentials occur very soon (tens to hundreds of milliseconds)
 - BOLD: initial dip (~1s) → maximal value (4~6s) → return to baseline (~20s)

Hemodynamic response function (HRF)

Friston et al, Neuroimage, 1995, 1998.

Chia-Feng Lu

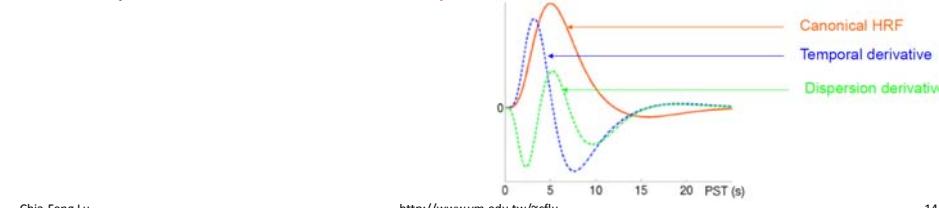
<http://www.ym.edu.tw/~cflu>

13

Stimulus Timing Design

- **Block design**
 - Combine BOLD response to a number of continuous trials (events)
- **Event-related (ER) design**
 - Obtain the BOLD response to a single event
- The more *efficient* a design, the less scan time is needed to achieve sufficient *power*.

Chia-Feng Lu

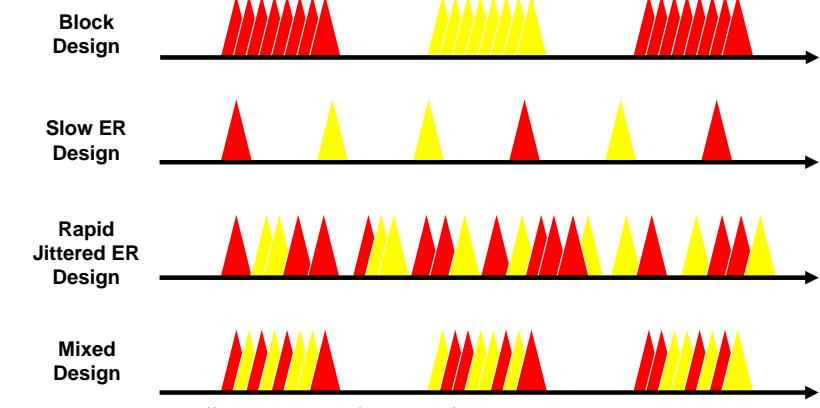

<http://www.ym.edu.tw/~cflu>

15

HRF and its derivatives

- The HRF characteristics can differ between
 - Brain regions within one subject (inter-region difference)
 - Subjects (inter-subject difference)
- The adaption of HRF in
 - The onset time (**temporal derivative**)
 - Dispersion/width of curve (**dispersion derivative**)

Chia-Feng Lu


<http://www.ym.edu.tw/~cflu>

14

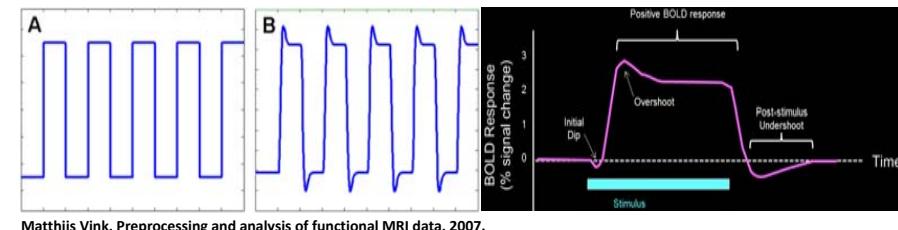
Design Types

= trial of one type = trial of another

fMRI slides from <http://culhamlab.ssc.uwo.ca/fmri4newbies/Tutorials.html>

<http://www.ym.edu.tw/~cflu>

16

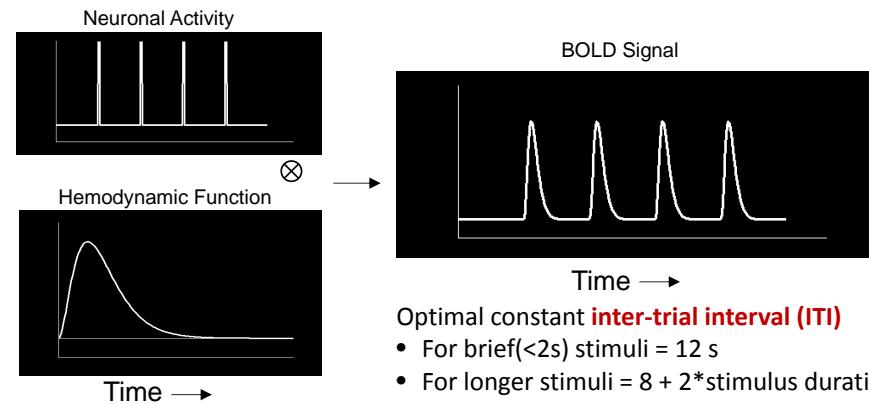


Block Design

- A design in which the task is presented in so-called blocks (15~30s), alternated with resting blocks.
- The number of scans should be equal in all conditions, so that the variance in all factors is the same.
- The longer the blocks are, the more chance there is for a correlation with low-frequency noise.
- The strength of the brain signal can decrease over time.

Block Design

- **Box-car function**
 - A 0 for no-task and a 1 for task period
- **Hemodynamic (BOLD) changes don not suddenly activate and stop activating in the way modeled by the box-car function.**
 - A better estimation by convolving the box-car input function with an HRF.


Pros of Block Designs

- high detection power of activated voxel/region
- has been the most widely used approach for fMRI studies
- accurate estimation of hemodynamic response function is not as critical as with event-related designs

Cons of Block Designs

- poor estimation power to differentiate the time courses in response to different conditions
- very predictable for subject
- Can't look at effects of single events
- becomes unmanageable with too many conditions (e.g., more than 4 conditions + baseline)

Slow Event-Related (ER) designs

Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

21

Pros of Slow ER Designs

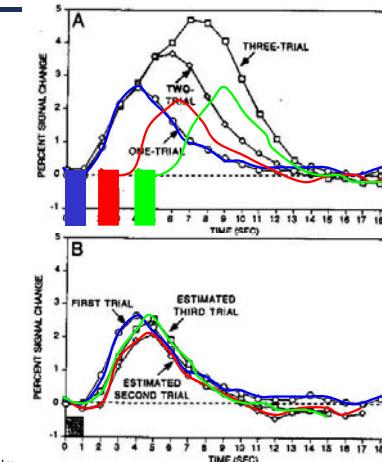
- excellent estimation of BOLD changes
- useful for studies with delay periods
- very useful for designs with motion artifacts because you can tease out artifacts

fMRI slides from <http://culhamlab.ssc.uwo.ca/fMRI4newbies/Tutorials.html>
<http://www.ym.edu.tw/~cflu>

22

Cons of Slow ER Designs

- poor detection power because of very few trials per condition
- subjects can get VERY bored and sleepy with long ITI.


How about making it fast?

Chia-Feng Lu

fMRI slides from <http://culhamlab.ssc.uwo.ca/fMRI4newbies/Tutorials.html>
<http://www.ym.edu.tw/~cflu>

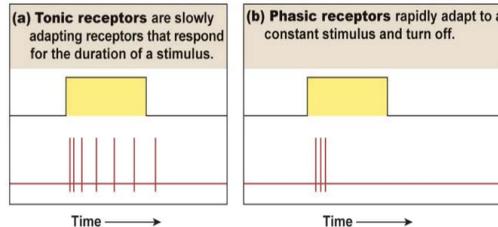
23

Linearity of BOLD signal

Chia-Feng Lu

Linearity:
"Do things add up?"
red = 2 - 1
green = 3 - 2

Sync each trial response
to start of trial


Not quite linear but good enough!

Dale & Buckner, 1997
fMRI slides from <http://culhamlab.ssc.uwo.ca/fMRI4newbies/>
<http://www.ym.edu.tw/~cflu>

24

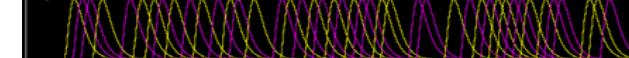
BOLD isn't totally linear

- Linearity of BOLD is sufficient for events with **at least 4s of ITI**.
- Phasic neural responses
- Adaptation or habituation depends on stimulus duration and intensity.

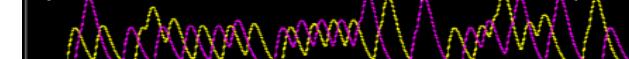
Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

25



Rapid Jittered Event-Related (ER) designs

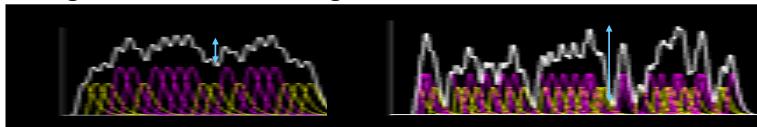

(A) Neuronal activity from closely-spaced, jittered events

(B) Individual Haemodynamic Components

(C) 2 Predictor Curves for use with GLM (summation of B)

(D) BOLD Signal

Chia-Feng Lu


fMRI slides from <http://culhamlab.ssc.uwo.ca/fmri4newbies/Tutorials.html>
<http://www.ym.edu.tw/~cflu>

26

Why jitter?

- Yields larger **fluctuations** in signal

When pink is on, yellow is off
→ pink and yellow are anticorrelated

Includes cases when both pink and yellow are off
→ less anticorrelation

- Without jittering predictors from different trial types are strongly **anticorrelated**.

- As we know, the GLM doesn't do so well when predictors are correlated (or anticorrelated)

fMRI slides from <http://culhamlab.ssc.uwo.ca/fmri4newbies/Tutorials.html>
<http://www.ym.edu.tw/~cflu>

27

Pros of Rapid-ER Designs

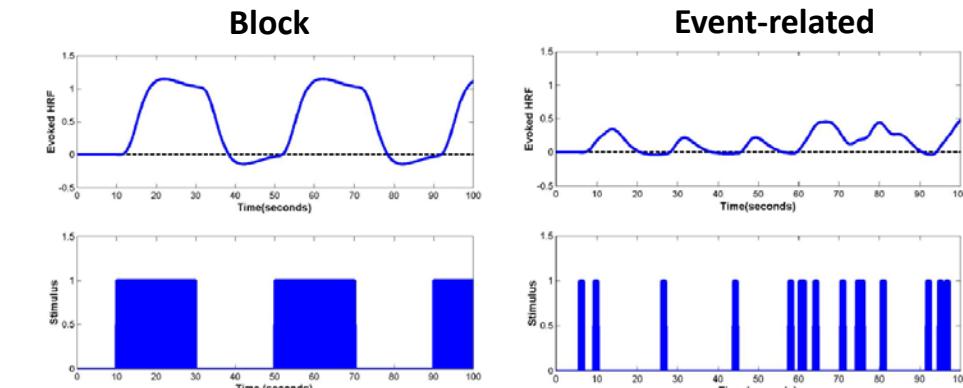
- high detection power
- trials can be put in unpredictable order
- subjects don't get so bored

fMRI slides from <http://culhamlab.ssc.uwo.ca/fmri4newbies/Tutorials.html>
<http://www.ym.edu.tw/~cflu>

28

Cons of Rapid-ER Designs

- reduced detection compared to block designs
- requires stronger assumptions about linearity
 - BOLD is non-linear with inter-event intervals < 4 sec.
 - Nonlinearity becomes severe under 2 sec.
- errors in HRF model can introduce errors in activation estimates


fMRI slides from <http://culhamlab.ssc.uwo.ca/fmri4newbies/Tutorials.html>

Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

29

Block vs. Event-Related Design

Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

30

Summary of Experiment Design

• Rules of thumb

• Blocked Designs:

- Powerful for detecting activation
- Useful for examining state changes

• Event-Related Designs:

- Powerful for estimating time course of activity
- Allows determination of baseline activity
- Best for post hoc trial sorting

• Mixed Designs

- Best combination of detection and estimation
- Much more complicated analyses

Quoted from Yingying's slide.

Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

31

THE END

alvin4016@ym.edu.tw

Teaching Materials: http://www.ym.edu.tw/~cflu/CFLu_course_fMRIana.html

Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

32