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本週課程內容
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• Theory of Optical Imaging
• Applications of Optical Imaging

• In Vivo Optical Imaging of Brain Function. CRC Press, 2009.
– Noninvasive Imaging of Cerebral Activation with Diffuse Optical Tomography (chap 14), 

TJ Huppert, MA Franceschini, DA Boas

• Application of Near Infrared Spectroscopy in Biomedicine. Thomas 
Jue, Kazumi Masuda. Springer, 2013.

– photo migration (chap 3)

http://www.ym.edu.tw/~cflu

fNIRS光學影像原理
Theory of Optical Imaging
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NIRS,DOI, and DOT
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• Near Infrared Spectroscopy (NIRS)
– FF Jobsis, 1977, Science
– Changes in oxy- and deoxy-Hb

• Diffuse Optical Imaging (DOI)
• Diffuse Optical Tomography (DOT)

– Spatially resolved imaging
– Model of light propagation 

Tomography

Topography

http://www.ym.edu.tw/~cflu



Partial Volume Correction
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• Modified Beer-Lambert Law (MBLL)
– Assumes that changes in chromophore concentrations are 

spatially uniform over the measurement sampling volume.

• Functional changes
– Only small portions of

the optical sampling volume
– Correction by a factor of 

40 to 60

http://www.ym.edu.tw/~cflu

Correction for MBLL
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• ܽ ܱܾܪܽ ܱܾܪ ܴܾܪ ܴܾܪ
• S : the separation between the source and detector.
• B(λ) : the pathlength factor, include both a differential 

path length factor (DPF) and a partial volume factor for 
each wavelength.

http://www.ym.edu.tw/~cflu

Diffuse Optical Imaging
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• MBLL does not provide a framework for 
reconstructing images.

• The model of light propagation in tissue is demanded.

• Diffusion approximation

2 ܽ
http://www.ym.edu.tw/~cflu

DOI and DOT
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• A grid arrangement of the 
optodes determines

– depth-sensitivity of the 
measurements 

– Spatial coverage
– spatial resolution

• For DOT
– Dense array of optodes
– Overlapping measurement 

combinations
 Experimental difficulty (price & time)

DOTDOI

http://www.ym.edu.tw/~cflu



Image reconstruction
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• Similar for DOI and DOT
• Forward solver 

– Photon fluence at source and 
detector positions

• Inverse solver
– Update	Δߤ

or 	Δܱܾܿܪ	ܽ݊݀	Δܴܾܿܪ

Read measurement

Construct forward model

Set i = 0

Select initial parameters 

Forward solver Φ (i)

Calculate objective function                                                         

Convergence?

Levenberg-Marquardt inverse solution

i=i+1

Stop

No
Yes

http://www.ym.edu.tw/~cflu

Forward modelling
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• Analytic solution
– Green's solution

• Numerical solution
– Monte Carlo Simulation
– Finite Element Method

(30,30,1)

Dimensions: 60 x 60 x 60 mm
μa :  0.005 mm‐1

μs : 1 mm‐1

g : 0.01
Source position: (30,30,1) mm
Photon numbers: 108

http://www.ym.edu.tw/~cflu

Continuous-wave simulation
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• Analytic solution vs. Monte Carlo

http://www.ym.edu.tw/~cflu

Forward modelling
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• Monte Carlo simulation (106~108 photons) for 
measuring spatial sensitivity.

The time-domain sensitivity profiles suggest the possibility of obtaining greater penetration depths in
the head from measurements made at longer delay times.

http://www.ym.edu.tw/~cflu



Finite Element Method
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• Discretize the area into a set of nodes

25 nodes, 32 elements

Two dimensional piecewise linear basisBlack: element labeling  Red: node labeling
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http://www.ym.edu.tw/~cflu

Finite Element Method
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http://www.ym.edu.tw/~cflu

Digital simulation 1/3
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• Uniform object   μs= 1.0mm-1, μa=0.002mm-1

source
http://www.ym.edu.tw/~cflu

Digital simulation 2/3
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• High absorption in center object
– μs= 1.0mm-1, μa(1)=0.002, μa(2)=0.100 mm-1

source
http://www.ym.edu.tw/~cflu



Digital simulation 3/3
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• Multi-absorption level object
– μs= 1.0mm-1, μa(1)=0.002, μa(2)=0.012 , μa(3)=0.080 , μa(4)=0.050 , μa(5)=0.200 mm-1

source

http://www.ym.edu.tw/~cflu

FEM vs MC simulation
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• μs= 1.0mm‐1, μa=0.005mm‐1, g=0.9, n=1.44
MC simulation Finite element method

http://www.ym.edu.tw/~cflu

Image reconstruction
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• Similar for DOI and DOT
• Forward solver 

– Photon fluence at source and 
detector positions

• Inverse solver
– Update	Δߤ

or 	Δܱܾܿܪ	ܽ݊݀	Δܴܾܿܪ

Read measurement

Construct forward model

Set i = 0

Select initial parameters 

Forward solver Φ (i)

Calculate objective function                                                         

Convergence?

Levenberg-Marquardt inverse solution

i=i+1

Stop

No
Yes

http://www.ym.edu.tw/~cflu

Digital phatom 1/2
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μs= 1.0mm‐1, μa(1)=0.002, μa(2)=0.100 mm‐1

http://www.ym.edu.tw/~cflu



Digital phatom 2/2
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 μs= 1.0mm‐1, μa(1)=0.002, μa(2)=0.012 , μa(3)=0.080 , μa(4)=0.050 , 

http://www.ym.edu.tw/~cflu

fNIRS影像應用
Applications of DOI/DOT
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Instrumentations
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• Safety
– Optical power incident on the tissue <4mW/mm

• Sensitivity
– Source-detector separation at least 2.5 cm for adults

• Detection
– 2.5 cm separation  light reaching the detector ~ 10 pW
– Need PMT, avalanche photodiodes (APD) or CCD cameras

http://www.ym.edu.tw/~cflu

Imaging Instrumentation
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• More sources and detectors compared to NIRS
– Each detector operates independently.
– The source light must be encoded. 

• Encoding strategies
– Time-sharing: turn on one source at a time (10-100 ms)
– Time-encoding: faster switching rate (<100μs) and integrating 

over several switch cycles
– Frequency-encoding: modulate sources at different frequency 

and recognized by a digital band-pass filter 

http://www.ym.edu.tw/~cflu



Comparison of image reconstruction
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• Only the tomography image reveals the two absorbers with 
equal amplitude.

http://www.ym.edu.tw/~cflu

Digital Simulation 
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• (b) True location of the simulated absorption change. (c) Image 
reconstructed using DOT and overlapping measurements. (d) 
Image reconstructed with a cortical constraint

http://www.ym.edu.tw/~cflu

DOI recording on M1
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< finger taping > Rescaled and normalized signals

http://www.ym.edu.tw/~cflu

DOI and fMRI activations
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Spatial corregistration using MRI

fMRI activations Corresponding Hb dynamics

HbO
HbR

http://www.ym.edu.tw/~cflu



DOT with visual stimulus
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• Contrast-reversing checker board pattern

http://www.ym.edu.tw/~cflu

DOT Applications
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Neomatal brain
Optical mammography

http://www.ym.edu.tw/~cflu

THE END
alvin4016@ym.edu.tw
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