本週課程內容 近紅外光量測與功能性磁振造影 • Physiology of neural activity fNIRS and functional MRI • Comparisons of fNIRS and fMRI 盧家鋒 助理教授 alvin4016@ym.edu.tw 2015/3/26 Lesson 5, Chia-Feng Lu 2015/3/26 Lesson 5, Chia-Feng Lu 2 1 http://www.ym.edu.tw/~cflu Aspects of Neural Activity • Synaptic transmission - Local field potential (LFP) - Input to the neuron • Action potentials (spikes) 神經活化生理機轉 - Output signals Physiology of neural activity - Permit communications between neurons 2015/3/26 Lesson 5, Chia-Feng Lu http://www.ym.edu.tw/~cflu 3 2015/3/26 Lesson 5, Chia-Feng Lu http://www.ym.edu.tw/~cflu

Neurovascular Coupling

- ATP is essential for neural activity
 - Restoration of ionic gradients
 - neurotransmitter recycling
- Glycolysis
 - a small amount of ATP
- Oxidative glucose metabolism (90% in brain) - a large amount of ATP
- Cerebral metabolism depends on a constant supply glucose and oxygen

eural activation Oxygen consumption Glucose consumption eurotransmitter release ATP (e.g., glutamate, GABA) consumpt asoactive chemica ents, metabolites .g., K+, NO, adend Cerebral Blood Floy

5

7

Neuroovascular coupling, scholarpedia.

Brain vascular system: glucose and oxygen

2015/3/26 Lesson 5, Chia-Feng Lu

http://www.vm.edu.tw/~cflu

Neurovascular Coupling

- Multiple mechanisms...
 - Astrocytes links neurotransmitter activity (glutamate cycling) to vascular responses.
 - Direct neuronal innervation of smooth muscle cells can also control blood flow.
- Requirement of metabolic nutrients
- Elimination of waste products CO2 and excessive heat

```
2015/3/26 Lesson 5, Chia-Feng Lu
```

http://www.ym.edu.tw/~cfl

Neurovascular Coupling

- A continuous supply of energy substrates is maintained by CBF
- Neural activity
 - Blood perfusion via capillaries ↑
 - regional cerebral blood flow (rCBF) ↑
 - regional cerebral blood oxygenation (rCBO) ↑
- Changes in rCBF or rCBO can be used to map brain activity
 - Functional neuroimaging

Zlokovic & Apuzzo, 1998.

2015/3/26 Lesson 5, Chia-Feng Lu

http://www.ym.edu.tw/~cflu

CBF and O2 Comsumption Mismatch

- During neural activity...
 - The fractional increases in CBF and glucose comsumption are similar in magnitude.
 - Oxygen comsumption increases much less than CBE
- → A net increase of oxygen in the blood and tissue.

2015/3/26 Lesson 5, Chia-Feng Lu

Ances et al., JCBFM 2001, n http://www.ym.edu.tw/~cflu

CMRO2: cerebral metabolic rate of oxygen

BOLD fMRI

- Blood-oxygenation level dependent (BOLD)
- BOLD fMRI detects the alterations in
 - The level of deoxygenated hemoglobin

Coupling Properties

- Use of vascular responses to infer neural activity
 - Time: lack of temporal information in vascular response
 - Space: focal activation of neurons ⇔ local vascular response?
 - Amplitude: linear relationship?

Coupling Properties: Time

- CBF vs. neural activation
 - Delayed by 1 ~ 2 s
 - Peaks 4 ~ 6 s after the neural response
- Fast modulation of neural activity is unlikey to be reflected in the vascular response.

- slow reaction of smooth muscle cells
- slow diffusion and uptake of neurovascular mediators

2015/3/26 Lesson 5, Chia-Feng Lu

11

Coupling Properties: Space

- Spatial resolution of the vascular response
- Vascular point spread function (PSF)
 - 1~5 mm
 - Depends on imaging conditions: monitoring tech., magnetic field, pulse sequence, species, and brain regions.
- Gray matter,
 - densest network of capillaries, intervessel distance of ~ 25 μm

Coupling Properties: Amplitude Alteration Factors Disease • In general, amplitude coupling appears to be largely linear. the chemical mediators - For stimulus durations larger than 4 s - the dynamics of the vascular system - hypertension, diabetes, and AD alter Ionic channels on vascular smooth muscle Various nonlinearities have been noted • Aging - neural responses below a certain amplitude may not evoke a CBF response - change the vascular system - neural responses may saturate, while vascular responses continue to - increasing tortuosity or reducing elasticity of the blood vessels increase Pharmacology - Diazoxide is used as a vasodilator \rightarrow large vascular responses with little or no change in neural activity. - Hypercapnia (the concentration of CO_2 in the blood \uparrow) \rightarrow vasodilation. 2015/3/26 Lesson 5, Chia-Feng Lu 13 2015/3/26 Lesson 5, Chia-Feng Lu http://www.ym.edu.tw/~cflu 14 http://www.ym.edu.tw/~cflu Metabolic and hemodynamic changes Mismatch between CBF neuronal activity + and O2 comsuption neurovascular coupling O₂metabolism (CMRO₂) + cerebral blood flow +++ Brain activation • fNIRS與fMRI比較 Elevated oxy-Hb Comparisons of fNIRS and fMRI Decrease deoxy-Hb oxyHb oxyHb +++ deoxyHb + deoxyHb oxyHb ++ Neuroimaging – Methods, pp.53. deoxyHb 2015/3/26 Lesson 5, Chia-Feng Lu http://www.ym.edu.tw/~cflu 15 2015/3/26 Lesson 5, Chia-Feng Lu http://www.ym.edu.tw/~cflu 16

Hemoglobin

Oxygenated Hemoglobin

- Diamagnetic
- Doesn't distort surrounding magnetic field
- No signal loss in BOLD signal

Deoxygenated Hemoglobin

- Paramagnetic
- Distorts surrounding magnetic field
- Signal loss in BOLD signal !!!

fMRI slides from http://culhamlab.ssc.uwo.ca/fmri4newbies/Tutorials.html 2015/3/26 Lesson 5, Chia-Feng Lu http://www.ym.edu.tw/~cflu

fMRI BOLD signal

- t = 0s, a steady state in which there is an given amount of oxygenated and deoxygenated hemoglobin.
- t = 1s, an increased of deoxygenated hemoglobin due to the oxygen demands of neuronal activation.
- t = 6s, an increased of blood supply and oxygenated hemoglobin "flush away" the deoxygenated ones.

Hemoglobin and BOLD

- The deoxy-Hb in concentration is the major factor determining the time course of the BOLD signal.
- Correlations with BOLD
 - deoxy-Hb (R=0.98, P<10⁻²⁰)
 - oxy-Hb (R=0.71)
 - total Hb (R=0.53)
- Correlations with CBF
 - total Hb (R=0.91, P<10⁻¹⁰)
 - oxy-Hb (R=0.83, P<10⁻⁵)

17

Quatitative Comparisons

- Simultaneous fNIRS and fMRI measurements in
 - Motor task
 - Working memory task
 - Multiple cognitive task
 - Visual stimulus
- Coverage
 - Frontal/prefrontal cortex
 - Sensorimotor cortex
 - Parietal cortex
 - Visual cortex

2015/3/26 Lesson 5, Chia-Feng Lu

http://www.ym.edu.tw/~cflu

18

2015/3/26 Lesson 5, Chia-Feng Lu

http://www.ym.edu.tw/~cflu

20

Spatial Localization of fNIRS

Scalp-Brain Distance

- A standard brain (colin27).
- Smaller distance in frontal regions and larger in parietal regions.
- Larger distances → lower BOLD-NIRS correlations
 Mean distance is 16.8 mm

Activation maps

- Defined by GLM
- Similar patterns between NIRS and fMRI
- Less inferior resolution in the NIRS data

Cui et al., 2011.

finger
tappingGo
NoGoline
orientationworkingdeoxy-Hb
p<0.05</td>Image: Constraint of the second second

2015/3/26 Lesson 5, Chia-Feng Lu

http://www.ym.edu.tw/~cflu

23

Resting state network

- Covering the frontal, temporal, and occipital cortices
- Highly correlate voxels (HCV) mainly distribute in brain tissue

ه ل	Distributions of HCVs with NIRS signals.							Sasai et al., 2012.		
•13•13•13•	Ch	Anatomical location of channel	oxy-Hb brain tissue (%)	Siculi (%)	Skin (%)	r value of 100th ranked voxel	deoxy-Hb brain tissue (%)	Skull (%)	Skin (%)	r value of 100th ranked voxel
Right	1	Fronta[_Sup_Media[_L	92	б	2	0.33	89	8	3	-0.30
1 /	2	Frontal_Sup_R	95	3	2	0.41	93	4	3	-0.37
110	3	Frontal_Sup_L	93	4	3	0.40	94	4	2	-0.40
Section of	4	FrontaLMid_R	85	5	10	0.32	81	7	12	-0.31
and the second	5	Frontal_Mid_Orb_L	70	9	21	0.29	72	8	20	-0.32
	6	Frontal_Inf_Trl_R	51	10	39	0.25	55	10	35	-0.24
	7	Fronta[_Inf_Orb_L	37	9	54	0.25	51	8	41	-0.26
	8	Temporal_Mid_R	94	3	3	0.41	90	5	5	-0.34
	9	Temporal_Mid_L	91	5	4	0.35	85	7	8	-0.31
	10	Occipital_Mid_R	95	2	3	0.49	88	5	7	-0.41
No and	11	Occipital_Mid_Ant_L	94	4	2	0.45	85	8	7	-0.36
ALL	12	Occipital_Sup_R	96	2	2	0.54	88	6	6	-0.47
	13	Occipital_Mid_Post_L	94	4	2	0.50	89	6	5	-0.44
STATE STATE OF THE OWNER	14	Calcarine_L	92	5	3	0.45	81	10	9	-0.35

2015/3/26 Lesson 5, Chia-Feng Lu

http://www.ym.edu.tw/~cflu

