

功能性近紅外光實驗設計

fNIRS Experiment Design

盧家鋒 助理教授
alvin4016@ym.edu.tw

2015/4/9 Lesson 7, Chia-Feng Lu

1

實驗設計

Experimental Design

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

3

本週課程內容

- Experimental design
- Design examples
- **In Vivo Optical Imaging of Brain Function.** CRC Press, 2009.
 - Noninvasive Imaging of Cerebral Activation with Diffuse Optical Tomography (chap 14), TJ Huppert, MA Franceschini, DA Boas
- **Basics of Experimental Design for fMRI: Block Designs & ER designs**
 - <http://www.fmri4newbies.com>

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

2

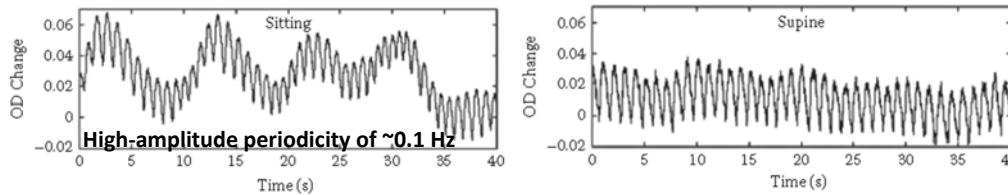
Concept of Exp Design

- **If neuroimaging is the answer, what is the question?**
 - Stephen M. Kosslyn (1999). *Phil Trans R Soc Lond B*.
- Is your study designed to answer questions about the functioning of the brain?
- Does your study bear on specific questions about the roles of particular brain regions?

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

4

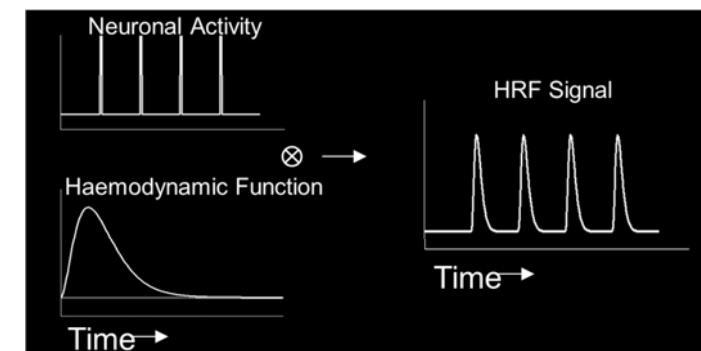

Considerations in fNIRS

- The foreknowledge of the location
- The expected characteristics of the activation signal
- The specific hypothesis addressed by the study

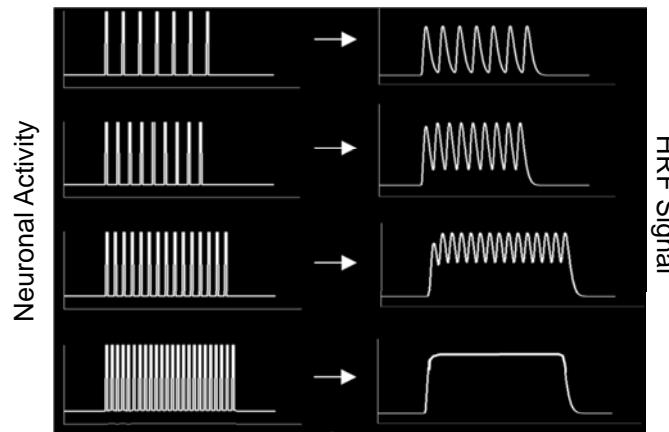
→ Block design or Event-related (ER) design ?

Baseline Recording without stimulation

- Eye-closed resting for a subject
 - 830nm, at C3 location
 - The Mayer wave (~0.1 Hz), a systemic blood pressure oscillation, is more prominent when standing or sitting
 - Vascular physiology, vasomotion or autonomic regulation



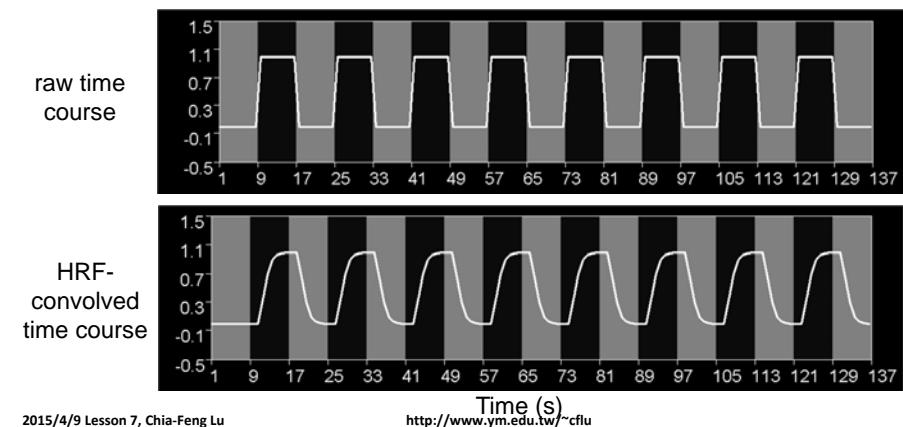
Location of activation


- Limited source and detector optodes
- Limited to the outer layers of the brain (approximately 5-8 mm)
- The depth sensitivity may be adjusted based on the source-to-detector distance
 - Visual cortex vs. prefrontal cortex

Convolution of Single Trials

- Anticipated temporal profile of HRF

Convolution of Single Trials

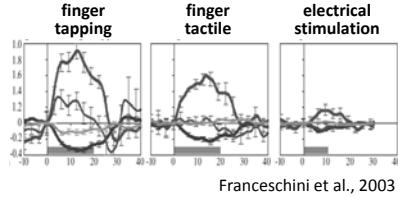


2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

9

Temporal dynamics of signal Block design


2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

10

fNIRS evoked response

- Blocked design
- alternated stimulation periods (20s) and rest periods (20s), 10 blocks for each condition

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

11

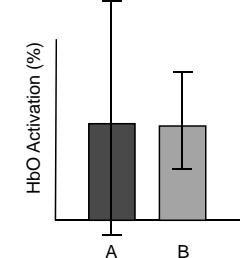
Statistical Power

- The probability of rejecting the null hypothesis when it is actually false
 - if there's an effect, how likely are you to find it?
- **Effect size**
 - More trials/blocks
- **Sample size**
 - More subjects, more runs
- **Signal to noise ratio**
 - Careful setup, fewer artifacts

→ increase power

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

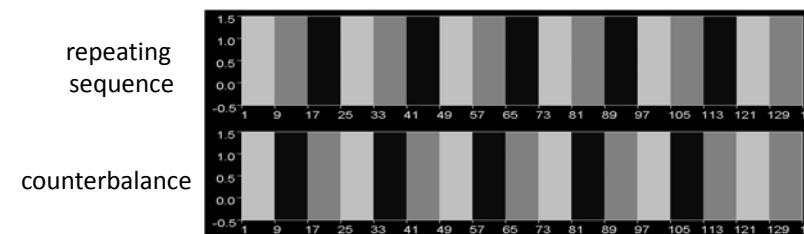

12

Put conditions in a run

- As far as possible, put the two/all conditions you want to compare within the same run.
- Why?
 - subjects get drowsy and bored
 - Instrumentation may have different amounts of noise from one run to another (e.g., baseline shift)
 - May cause stats differently between runs

Common flawed logic

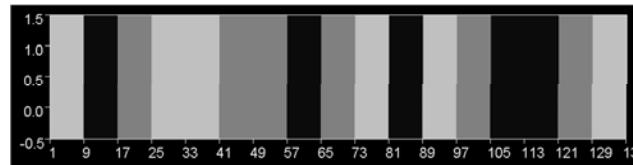
- Run1: A – baseline
- Run2: B – baseline
- A – 0 was significant, B – 0 was not
 - Area X is activated by A more than B ??


Experiment Duration

- Short enough that the subject can remain comfortable without unnecessary moving or distraction
- Long enough that studied condition can be included in run
 - Simplify the task condition, usually 2~6 conditions
 - At least 3 repetition for each condition
- Ideal duration is between 10 to 30 minutes

Block Design

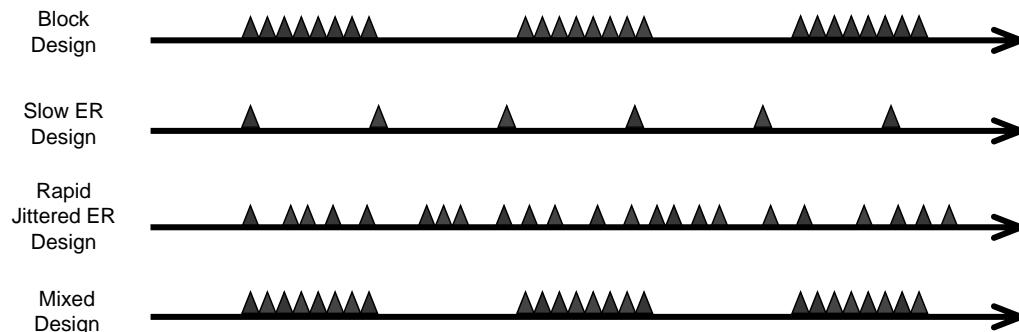
Repeating Sequence


- We could just order the epochs in a repeating sequence...
- Problem: There might be order effects (especially for cognitive study)
- Solution: Counterbalance with another order
- Caution: remember the order !

Block Design

Random Sequence

- We could make multiple runs with the order of conditions randomized...
- Problem: To avoid flukiness, you'd want to have different randomization for different runs and different subjects, but then you're going to spend ages defining protocols for analysis



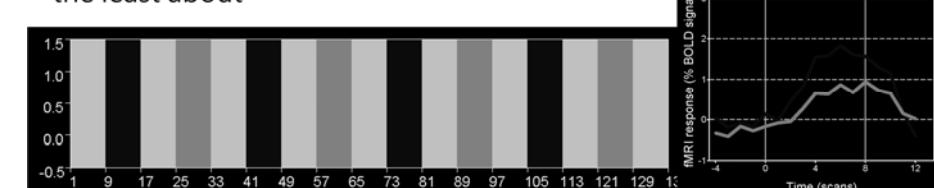
2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

17

Design Types

2015/4/9 Lesson 7, Chia-Feng Lu


<http://www.ym.edu.tw/~cflu>

19

Block Design

Regular Baseline

- A fixation baseline between all stimulus conditions (either with regular or random order)
- **Benefit:** With event-related averaging, this regular baseline design provides nice clear time courses, even for a block design
- **Problem:** Spending half of scan time collecting the condition you care the least about

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

18

Block Designs

Pros & Cons

- **Pros**
 - high detection power (identify channels of activation)
 - has been the most widely used approach
 - accurate estimation of hemodynamic response function is not as critical as with event-related designs
- **Cons**
 - poor estimation power (measure the time course of Hb)
 - subjects get into a mental set for a block
 - very predictable for subject
 - can't look at effects of single events (e.g., correct vs. incorrect trials, remembered vs. forgotten items)
 - long experiment duration with too many conditions (e.g., more than 4 conditions + baseline)

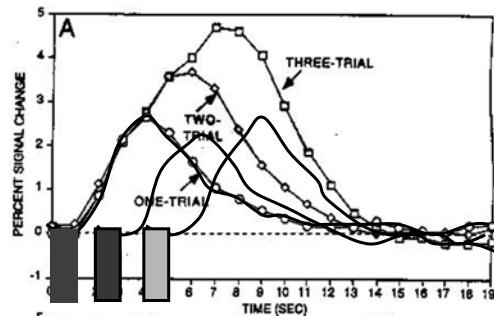
2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

20

Slow Event-Related Designs

Pros & Cons


- **Pros**
 - excellent estimation
 - useful for studies with delay periods
 - very useful for designs with motion artifacts (grasping, swallowing, speech) because you can tease out artifacts
 - analysis is straightforward
- **Cons**
 - poor detection power because you get very few trials per condition by spending most of your sampling power on estimating the baseline
 - subjects can get VERY bored and sleepy with long inter-trial intervals

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

21

Linearity of BOLD signal

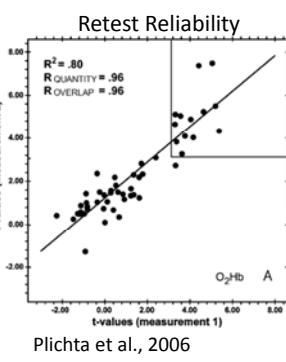
Linearity:
"Do things add up?"
red = 2 - 1
green = 3 - 2

Dale & Buckner, 1997


2015/4/9 Lesson 7, Chia-Feng Lu

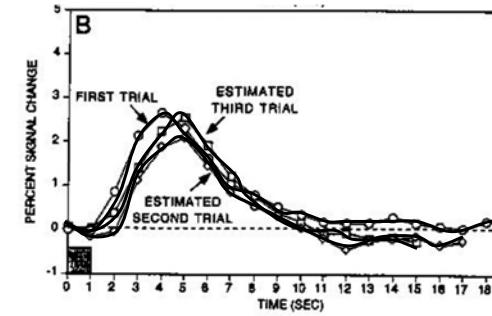
<http://www.ym.edu.tw/~cflu>

23


Reliability of ER fNIRS

- a simple checkerboard for 1200 ms reversing in contrast at 6 Hz followed by 13.8 s of a black screen presentation
- number of trials was set to $n = 60$
- retest interval = 3 weeks

2015/4/9 Lesson 7, Chia-Feng Lu


<http://www.ym.edu.tw/~cflu>

Plichta et al., 2006

22

Linearity of BOLD signal

Sync each trial response
to start of trial

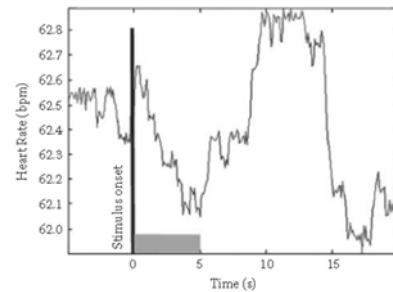
Not quite linear but good enough!
(with interval of 2~4 s)

Dale & Buckner, 1997

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

23


2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

24

Other considerations

- The potential contamination from background physiological signals.
 - Heart-rate increase
 - Motion artifacts
- Post-processing

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

25

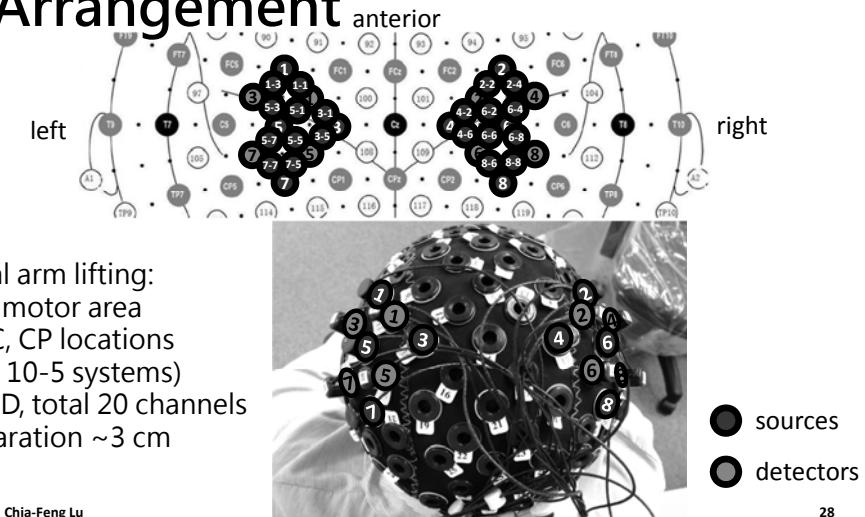
實驗設計實例 fNIRS Examples of Exp Design

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

26

Design Steps


- Participants' tolerance
 - Age, disease ...
- Study aims
 - Target Locations
 - Number of conditions
 - Anticipated signals
- Experiment paradigm
 - S-D arrangement, number of channel
 - Block design or event-related design
 - Task instruction & stimulation delivery
- Log sheet
 - Name, gender, age, history number/ID, habitual hand, study group
 - Experiment paradigm and notation

2015/4/9 Lesson 7, Chia-Feng Lu

<http://www.ym.edu.tw/~cflu>

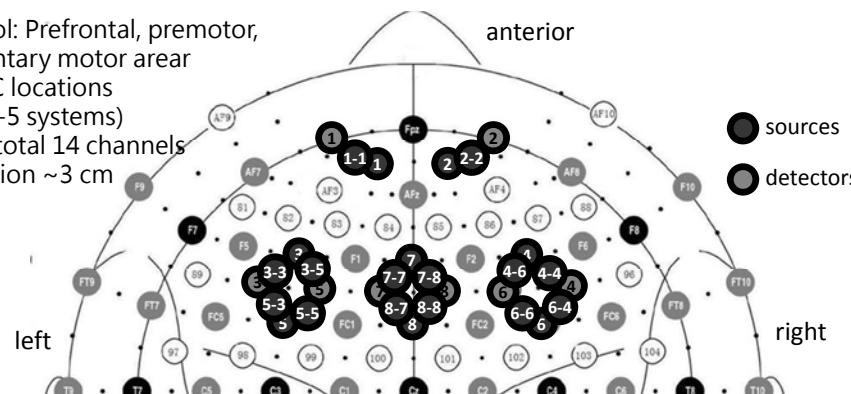
27

S-D Arrangement

Bilateral arm lifting:
Sensorimotor area
➔ FC, C, CP locations
(EEG 10-5 systems)
➔ 8S-8D, total 20 channels
separation ~3 cm

2015/4/9 Lesson 7, Chia-Feng Lu

28


S-D Arrangement

Gait control: Prefrontal, premotor, supplementary motor area

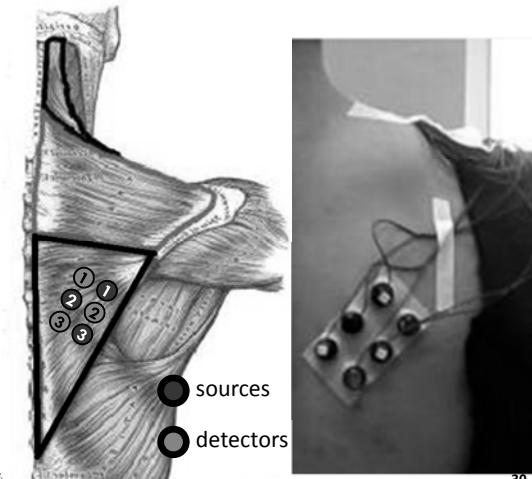
→ Fp, F, FC locations

(EEG 10-5 systems)

→ 8S-8D, total 14 channels
separation ~3 cm

2015/4/9 Lesson 7, Chia-Feng Lu

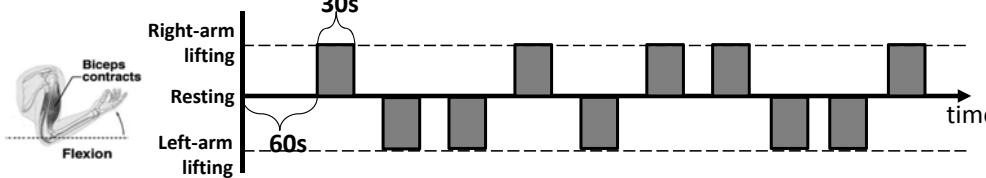
<http://www.ym.edu.tw/~cflu>


2

S-D Arrangement

Trapezius muscle

→ 3S-3D, total 7 channels
separation 2~2.5 cm

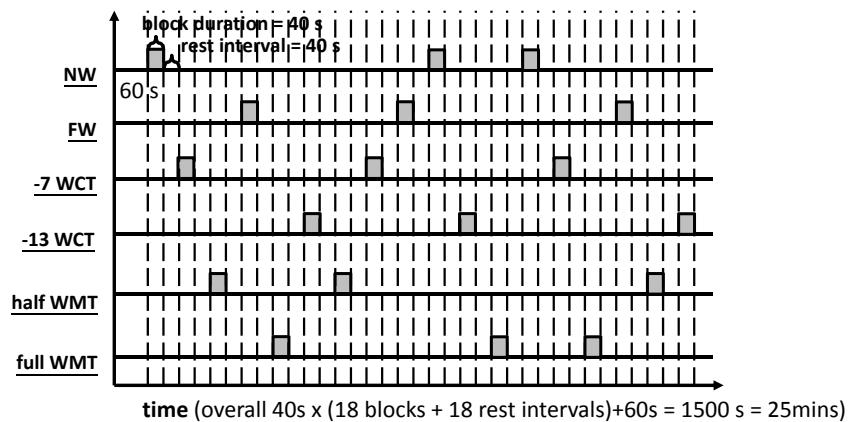

http

30

Block design diagram

Baseline	Relax and sit on an armchair (~1 min)	
Experiment I	Right-arm lifting (~30 s)	(Overall ~11 mins)
Rest interval	Relax and sit on an armchair (~30 s)	
Experiment II	Left-arm lifting (~30 s)	

※Experiment States were marked by “F1” and Rest intervals were marked by “F3”



2015/4/9 Lesson 7: Chia-Feng Liu

<http://www.ym.edu.tw/~cflu>

11

Block design diagram

2015/4/9 Lesson 7: Chia-Feng Lin

<http://www.ym.edu.tw/~csf>

32

Task Instruction

語意流暢度測試

我們會給予您一個注音符號，例如 ㄔ

請您說出以此開頭的語詞

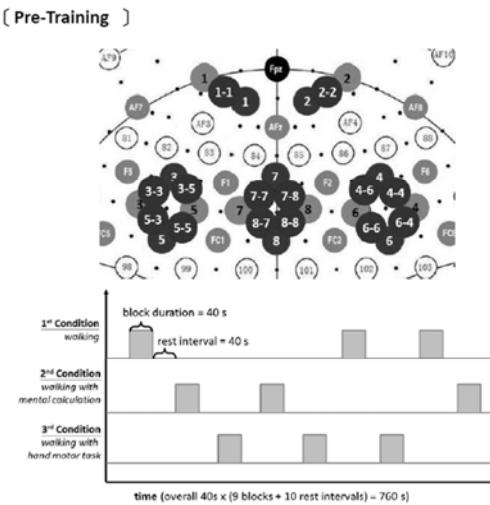
風車、鳳凰、發現

富裕、廢料、非常

Log sheet

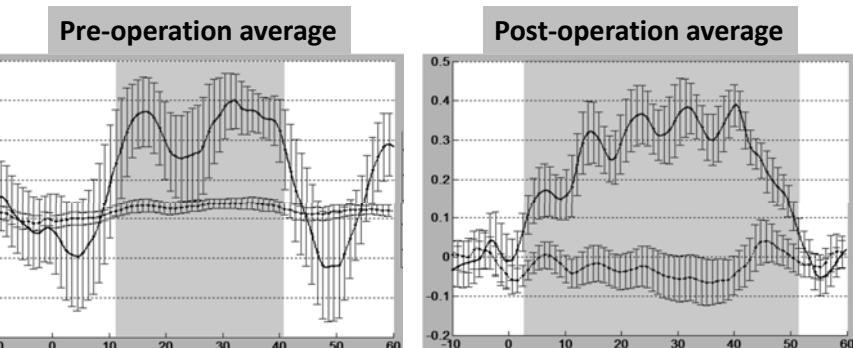
fNIRS cerebral Hb monitoring sheet for dual task

Test date and time : _____


Subject name : _____

Subject ID : _____ Gender : _____

Birthday : _____ Habitual hand : _____


NOTE : _____

Log sheet

Evaluation Outcome

- Change percentage, activation interval, slop

THE END

alvin4016@ym.edu.tw