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Fractal and noisy CBV dynamics in humans:
influence of age and gender

Andras Eke, Péter Herméan and Méarton Hajnal

Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest,
Hungary

The complexity of spontaneous cerebral blood volume (CBV) fluctuations can emerge from random,
fractal, or chaotic processes. Our aims were to define the contribution of these patterns to the
observed complexity and to evaluate the effect of age and gender on it. The total hemoglobin
content as the measure of CBV was monitored by near-infrared spectroscopy on volunteers (men
n=19, age=20 to 78 years; women n=23, age=21 to 79 years). Random and fractal patterns were
distinguished by the spectral index (f). Chaos was identified by surrogate analysis of the correlation
dimension (a static chaotic parameter, the dimension of the correlation integral) and the largest
Lyapunov exponent (a dynamic chaotic parameter, the rate of exponential divergence of the system
states from a perturbed initial condition over the chaotic attractor). In spontaneous CBV
fluctuations, both fast random and slow fractal dynamics are present separately in their spectra
by a cutoff frequency, f'. Below f’ the pattern is fractal, in that power rises inversely with frequency
as 1/f. f’ decreases with age in men and women alike (F1: up to 0.1240.06 Hz versus F2: up to 0.05+
0.04 Hz at P=0.015, and M1: up to 0.16 +0.05 Hz versus M2: up to 0.11 +0.04 Hz at P=0.044). Neither
pre- nor postmenopausal age groups (1 and 2, respectively) showed a '"*“g gender difference.
Surrogate analysis showed that CBV dynamics cannot be characterized on the grounds of
deterministic chaos. Cerebral blood volume fluctuates in a complex, bimodal manner in humans, in
that the fast dynamics has no structure, while the slow dynamics exhibits a self-similar, that is,
fractal temporal structure. The range of fluctuation amplitudes produced by fractal dynamics is
always larger than that of random fluctuations, and it shrinks with an altered structuring in aging
women only.
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Introduction

Earlier, in a group of young volunteers using near-
infrared spectroscopy (NIRS) (Jobsis, 1977), we
showed that cerebral blood volume (CBV) sponta-
neously fluctuated while being in a physical and
mental state of rest (Eke and Hermadn, 1999). Fractal
time-series analysis (Bassingthwaighte et al, 1994) of
the high-definition, extended NIRS records revealed
a complex, self-similar, that is, fractal pattern
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spanning across many temporal scales, characteris-
tic of one of three possible processes capable of
producing such a noise-like pattern (Eke and Her-
man, 1999). The other two are low-dimensional
deterministic chaos seen in vasomotion (Griffith and
Edwards, 1993; Lacza et al, 2001), and the lack of
either fractal correlation or chaotic determinism,
namely random noise (white noise).

Simple dynamics in CBV in the form of sponta-
neous slow-frequency oscillations have also been
reported using NIRS, although in records of short
duration (Elwell et al, 1999; Schroeter et al, 2004).
Recently, in female subjects within short windows
of observation, vasomotion-induced spontaneous
CBV oscillations were shown to be centered around
approximately 0.02 and 0.1 Hz. The peak at 0.1Hz
was shown to disappear with age because of the
declining reactivity of vascular smooth muscle cells
and increased stiffening of the cerebral vessel wall
(Schroeter et al, 2004).
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We hypothesize that (i) the long-term pattern of
spontaneous fluctuations in cerebrocortical hemo-
dynamics carries information on the integrity of the
underlying mechanisms adjusting vascular calibers
along the monitored vascular tree, and (ii) properly
chosen quantitative descriptors of this complex
pattern can assess signal structuring in a manner
that can then be correlated with age and gender,
known correlates of cerebrovascular pathology, most
notably ischemic and hemorrhagic stroke (Murphy
et al, 2004).

Stroke is a major public health problem through-
out the world, whose incidence increases with age.
Not only age but—because of female reproductive
hormones and yet to be understood mechanisms,
gender has an impact, too, in that age-specific
mortality for ischemic stroke was found to be lower
for women than for men under 64 year of age, but
was higher among older women aged over 65 years
of age (AHA, 2002; Murphy et al, 2004). The
American Heart Association (AHA, 2002) reports
that overall more women than men have stroke, an
observation that is often overlooked.

Age-related and gender-specific analysis of the
spontaneous, resting fluctuations seen in extended
NIRS records is still missing, although it is clearly
needed, for it can provide information about the
resting cerebral hemodynamics that can be altered
by age and gender.

Accordingly, our aims were (i) to expand on our
first observation of human resting long-term com-
plex CBV fluctuations (Eke and Herman, 1999) using
refined and numerically tested fractal tools (Eke et
al, 2000, 2002) and methods of deterministic chaos
to determine as to which of these two approaches
can offer the model for the observed complexity
seen in extended records, and (ii) to investigate the
impact of aging and gender on these complex CBV
dynamics.

We used NIRS because it is uniquely suitable to
capture the dynamics in CBV in a noninvasive
manner (Figure 1). NIRS is known to be particularly
sensitive to signals from the microvasculature (Liu
et al, 1995), which favors the early detection of
changes in the fluctuation pattern that would result
from age-related degeneration of the cerebral vascu-
lature affecting the microvasculature before larger
vessel segments (Schroeter et al, 2004).

We employed fractal and chaotic approaches to
analyze the complex CBV fluctuations for the
following reasons. On the one hand, we could
rightfully assume that the numerous vessel seg-
ments within the region of interest (ROI) sampled by
NIRS created a system with a large number of
determinants and a high degree of freedom, whose
overall behavior can be characterized by fractal
correlation among the temporal events (Kaplan and
Glass, 1995). However, the use of chaotic time-series
analysis was called for since the low-dimensional
chaotic nature of vasomotion has been shown in
isolated vessel segments (Griffith and Edwards,
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Figure 1 Backscattered near-infrared energy fluctuations re-
corded by near-infrared spectroscopy (NIRS). The signal from
the total hemoglobin channel (HbT = Hb + HbO,) was recorded
from the optode placed over the mock brain (left) and the
forehead of a human subject (right) for 1,000 secs. Values are
plotted on the same scale to allow for a direct comparison of the
infrared energies. Note that fluctuations in NIR energy because
of measurement noise (left) span only a fraction of the range of
the signal detected from the human brain cortex (right). The
in vivo variations are attributed to fluctuations in the total
hemoglobin content, and hence to that of CBV.

1993; Lacza et al, 2001), and because vasomotion
is the key factor generating an intrinsic rhythm
producing vasoconstriction/vasodilation cycles
(Griffith and Edwards, 1993; Nilsson and Aalkjaer,
2003).

Materials and methods
Theory

Near-infrared spectroscopy: According to the principle
of continuous wave NIR spectroscopy (cwNIRS), back-
scattered light intensities were measured at wavelengths
of 775, 830, 849, and 907 nm by an NIRO 500 Cerebral
Oxygen Monitor (Hamamatsu Photonics, Hersching, Ger-
many) with a 4cm interoptode distance (the distance
between the source and detector fibers). The sampling
volume of the NIRS measurement is determined by the
interoptode distance and the diffusion path of the photons
injected into the brain cortex at the source and collected at
the detector fiber bundle. It is known to be banana shaped
as shown by Monte Carlo simulation (Chance, 1994;
Hiraoka et al, 1993). From the optical density (OD) of
the tissue calculated as the log ratio of incident and
backscattered light intensities at a given wavelength, the
modified Beer-Lambert law yields concentrations of the
main chromophores, the oxygenated (HbO,) and deox-
ygenated (Hb) forms of hemoglobin and the cytochrome
aa; (Cub, CHbO,s Ccaas TESPECtively).

I
OD =1g 70 = embCrab D + emvo, Crbo, D

+ €CaazCcaasD + S

where ém, €mvoz, and éc..s are the respective specific
extinction coefficients, D is the optical pathlength (for a



4cm interoptode distance, it is 23.72cm), and S is the
scattering loss.

Fractal and chaotic time-series analyses: Fractal and
chaotic time-series analyses are suitable to determine the
presence of a complex order underlying the seemingly
random fluctuations of physiologic parameters as de-
scribed in detail elsewhere (Bassingthwaighte et al, 1994;
Eke et al, 2000, 2002; Kaplan and Glass, 1995). Briefly,
fractal analysis is carried out to show the presence of a
self-similar order among a large number of simultaneous
events creating a system with a high degree of freedom
(Eke et al, 2002). The purpose of applying chaotic
analysis, which is targeted at complex systems with a
low degree of freedom created by a few coupled processes,
is not to identify their differential equations, but their
number only, which can be estimated by the dimension of
the phase—space attractor (see correlation dimension;
Grassberger and Procaccia, 1983). In addition, by calculat-
ing the spectrum of the Lyapunov exponents, the
dynamics of the system’s evolution in the state or phase
space can be captured (Wolf et al, 1985). Surrogate data
analysis (Theiler et al, 1992) complements these ap-
proaches by being suitable for verifying the presence of
determinism between subsequent events of the temporal
process.

Methods

The total hemoglobin concentration change (HbT) was
recorded by the NIRO 500 unit at a rate of 2Hz. As
recommended by Eke et al (2002), an extended record of
2" (N=16384) samples was collected for each subject in a
session of approximately 2.5h. The source and detector
fibers were secured in a rubber pad. The optodes (a set
(pair) of optical fibers connected to the light source and
the detector) were mounted just under the hairline over
the forehead with a minimal but adequate pressure to
secure it in place without creating potentially painful
pressure points in the skin. The cranium was shielded
from ambient light by a black cloth. Measurement noise
was determined by placing the optode over a slab of a
mock brain, whose scattering (y;=10.96 (1/mm)) and
absorption (¢, =0.099 (1/mm)) coefficients were adjusted
to match that of the human brain (courtesy of Professor
Britton Chance, University of Pennsylvania, Philadelphia,
PA, USA). Because the average tissue hematocrit in the
ROI is constant in a steady state, HbT is proportional to
CBV.

Subijects

After approval by the Local Research Ethics Committee,
and obtaining informed written consent, 43 volunteers (23
women, 19 men, with an age distribution of 21 to 79 years
and 20 to 78 years, respectively) participated in the study.
Two groups for each gender were created: F1, incorporat-
ing premenopausal female subjects, and F2 including
postmenopausal female subjects and their age-matched
male groups (M1 and M2, respectively). The number of
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subjects and their age statistics are as follows: F1 (n=16,
39.25+10.64 years), F2 (n=7, 60.71+11.66 years), M1
(n=11, 32.18+9.62 years), and M2 (n=8, 65.00+9.61
years). The NIRS recordings were performed in a comfor-
table sitting position in an armchair with no head support.
Given that the length of a session slightly exceeded 2.5 h,
television viewing and reading were allowed to maintain
an adequate level of alertness without invoking emotional
or mental stress. Video recording was used to document
that this in fact was the case. Subjects showing head
dropping, etc., as a sign of becoming drowsy (a decreased
level of alertness) were excluded from the study.

Data Processing and Analysis

NIRS data were dumped via the RS232 port of the NIRO
instrument into a computer file. Deoxygenated (Hb) and
oxygenated (HbO,) hemoglobin were calculated by multi-
linear regression across the OD data using the software
supplied by the manufacturer, and HbT was obtained as
Hb + HbO,. Total hemoglobin concentration change time
series were created by clipping the records to a length of
2" (N=16,384) datapoints.

Fractal analysis: The power spectral density or period-
ogram method (Fougere, 1985) was used to analyze the
HbT time series in their frequency domain. This method
has been previously tested as a fractal tool for its
applicability and precision (Eke et al, 2002). The power
spectrum was calculated by the fast Fourier transform
algorithm for a range of frequencies from 0.000122 to 1Hz
(the latter is the Nyquist frequency, f, and the former is
finin = fn/{N/2}). Parabolic windowing and endmatching as
signal preprocessing steps were used. The bimodal
character of our spectra called for local power slopes to
be determined for the range of high and low frequencies,
separately (Figure 2); hence, the high frequencies were not
excluded as recommended for the global slope version of
the method (Eke et al, 2000, 2002). The frequency
separating these two ranges (cutoff frequency, f’) was
identified on visualized spectra. The temporal window
corresponding to f' was determined for each series to
calculate the range of fluctuation amplitudes in the high
frequencies. For each series, this window was applied in a
contiguous manner, and the average range was calculated.
The range of fluctuation amplitudes for the low-frequency
dynamics was calculated as the difference between the
value for the whole series and that of the high-frequency
dynamics. The fractal time-series analysis was performed
in a MatLab environment (The MathWorks Inc., Natick,
MA, USA) by using our FracTool program code. The
nearest-neighbor correlation coefficient, r;, was calculated
for each group (Eke et al, 2000, 2002).

Chaotic analysis: Chaotic analysis was performed by the
TSAS software (downloadable from ftp://psas.p.u-tokyo.
ac.jp/pub) on the supercomputer of the Hungarian
National Information Infrastructure Development Program
(which consists of two Sun Fire model 15000 computers
and one Sun Fire model 480R computer with a total of 196
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Figure 2 Examples of fractal time series when the self-similarity
in the signal is exact (left) and when it is present in statistical
distributions only (right). In either case, the slope of the
periodogram fitted across a range of spectral estimates yields
the spectral index, 8, a measure of the 1/f# pattern, which is the
fractal character of the signal. The spectrum of an exact
monofractal has only a single slope, while the CBV signals in
this study exhibited bimodal spectra (right) with a shallow slope
for the high ranges and a steep slope for the low ranges of
frequencies.

parallel processor computing power). Ten surrogate series
were created from each raw series and for each correlation
dimensions and Lyapunov exponents were computed.

Statistical analysis: Descriptive statistics for the mean,
standard deviation, and the calculation of significance by
Student’s two-tailed t-test were performed in Excel
spreadsheets (Microsoft Corporation, Redmond, Washing-
ton, DC, USA).

Results

The fluctuation in the backscattered NIR energy
with the optode placed over a slab of a mock brain
is only a fraction of that detectable from the
human forebrain at rest (Figure 1); hence, the former
attributes to measurement noise, while the latter
relates to fluctuation in the HbT of the brain cortex.

Fractal Analysis of Cerebral Blood Volume Dynamics

Spectra of extended records of spontaneous CBV
fluctuations revealed a bimodal distribution of
power from f.;, to fy as captured in periodograms
(Figures 2 and 3). Between f,.;, and f’, the pattern is
self-similar, in that power increases according to an
inverse power-law relationship with frequency,
otherwise known as a 1/f* pattern (Eke et al, 2002).
The fractal range between f,,;, and f’ becomes narro-
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Figure 3 Cerebral blood volume (CBV) fluctuation patterns (left)
and their corresponding bimodal spectra in a young, middle-
aged, and old woman. The correlated, self-similar, that is,
fractal pattern is seen in the low frequencies, while an
uncorrelated, noisy dynamics dominates above this frequency
range. The aging process increases this noisy domination in
CBV dynamics.
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Figure 4 Cutoff frequency between the random high-frequency
and the fractal low-frequency dynamics of cerebral blood
volume (CBV) as a function of age in male (closed circle) and
female (open circle) subjects (upper left). The range of fractal
and random fluctuations (triangle and circle) as a function of
age is shown for male (closed) and female (open) subjects
(lower left). The mean and standard deviation for pre- and
postmenopausal women groups and age-matched groups of
men are plotted on the right.

wer with age (Figures 3 and 4, upper left). A random
pattern was found above f' (Figure 2), which
expands into lower frequencies with age (Figure 3).
In the pre- and postmenopausal age groups, the
respective difference in f’ was significant (F1: up to
0.12+0.06 Hz versus F2: up to 0.05+0.04Hz at
P=0.015, and M1: up to 0.16+0.05Hz versus M2:
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Figure 5 Spectral indices for the fractal and random dynamic
components of cerebral blood volume (CBV) fluctuations as a
function of age in male (closed circle) and female (open circle)
subjects are shown on the left (V8 and "&"B, respectively). The
mean and standard deviation for pre- and postmenopausal
women groups and age-matched groups of men are plotted on
the right.

up to 0.11+0.04Hz at P=0.044) (Figure 4, upper
right). The ranges of fractal CBV fluctuation ampli-
tudes (Figure 4, lower panels) were at a higher level
and larger than those of the random dynamics,
irrespective of age in men and women alike (M1:
9.074+4.01 versus 1.2940.38 umol/L. at P<0.001;
M2: 8.854+3.10 versus 2.08+0.91umol/L at
P<0.001; F1: 6.934+1.92 versus 1.69+0.65 umol/L
at P<0.001; and F2: 4.69+1.57 versus 2.13+
0.56 umol/L at P=0.0016).

The age-dependent narrowing of the fractal dy-
namics appears to be associated with increasing
power slopes in women (Figure 5, upper left);
however, in neither age groups did the degree of
fractal correlation as measured by ' between men
and women differ statistically (F1: 1.23 +0.25 versus
M1: 1.1440.22 at P=0.329; F2: 1.3940.26 versus
M2: 1.17 +0.20 at P=0.089) (Figure 5, upper right).
The nearest-neighbor correlation coefficients calcu-
lated from the mean of “B in each group as
r,=2"2-1 (Eke et al, 2000, 2002) were F1: —0.41
versus M1: —0.45, and F2: —0.34 versus M2: —0.44.
The difference between F1 and F2 groups was 14% of
the full range of anticorrelation, where —0.5<r, <0,
while between groups M1 and M2 it was a mere 2%.
Dynamics in the high frequencies of the period-
ograms (above f) were of a near-zero spectral index
(Figure 5, lower left), with no difference in the pre-
and postmenopausal female subjects and their age-
matched male groups (Figure 5, lower right).

Chaotic Analysis of Cerebral Blood Volume Dynamics

At an embedding dimension (a fundamental para-
meter of the chaotic analysis, the dimension of the
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virtual multispace, which embeds the chaotic
attractor) of 12 and lag (time delay; when used in
the chaotic analysis it defines the resolution of the
chaotic attractor in the virtual multispace, and when
used with the autocorrelation function it defines the
temporal separation of events to be correlated) of
0.5secs, we obtained a value of 10.60+0.3 for the
correlation dimension, D.,,,, and a value of 0.04+
0.03 for the largest Lyapunov exponent, A,... The
corresponding range of values for the surrogate data
sets were 9.954+0.66 to 10.77+0.39 and 0.04+0.02
to 0.07+0.01, respectively. Because the surrogate
range for D,.’s and An.’s overlaps with that of the
values obtained from the raw data sets, the latter
cannot result from chaotic dynamics; hence, further
analysis of complexity in this direction was discon-
tinued.

Discussion

The cwNIRS method has a sufficiently high sensi-
tivity for monitoring HbT, and proportionately
CBYV, because approximately 69% of the measured
NIR energy arises from this compartment (Kohri
et al, 2002) (Figure 1). The fact that scattering in
the parenchyma is strong (scatteringcoefficient >
absorption coefficient) does not preclude that it
remain relatively constant. In fact, when scattering
and absorption are simultaneously assessed (Kohl et
al, 1998), the scattering coefficient has been shown
to change only 5% during cortical spreading
depression, a condition when cerebral blood flow
and CBV undergo marked changes. Moreover, a
strong correlation between CBV changes measured
by positron emission tomography and changes in
HbT, measured by cwNIRS using an NIRO 500
equipment identical to the one employed in our
study, was found (Rostrup et al, 2002). Very
importantly, these authors found a strong propor-
tionality between CBV and HbT under conditions of
hypo- and hypercapnia, producing corresponding
changes in CBV and HbT across a range larger than
the one of the resting fluctuations reported in our
study. The concept of approximating S in the
cwNIRS equation (see in Methods) as constant has
been described in various review publications
(Delpy and Cope, 1997; Hoshi, 2003; Obrig and
Villringer, 2003; Villringer and Chance, 1997). Taken
together, based on theoretical considerations (Delpy
and Cope, 1997; Hoshi, 2003; Obrig and Villringer,
2003; Villringer and Chance, 1997) and experimen-
tal data (Kohl et al, 1998; Rostrup et al, 2002) in a
steady state of hemodynamics, HbT relates to CBV
given the fact that under these conditions the mean
tissue hematocrit can also be regarded as constant.
All events occurring within the extra- and intra-
parenchymal vascular compartments of the ROI are
integrated within the 0.5-sec sampling period by the
NIRS instrument as the sum of emerging photons.
This allows for adequate sensitivity and temporal
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resolution. In addition, the 0.5-sec integration, 2 Hz
sampling rate, and configuration of the NIRO 500
circuitry together exclude signal fluctuations be-
cause of heartbeats. Hence, NIRS monitors CBV in a
lumped manner from dispersed spatiotemporal
domains according to our intention of analyzing
the temporal complexity of CBV fluctuations as they
emerge from the vasculature of a cerebrocortical
region.

The complex fluctuations observed in the cerebro-
cortical hemodynamics of our subjects as captured
in extended records are associated with the resting
temporal activity pattern of the human brain. This
experimental condition is characterized by an alert
state of the subject devoid of stress or provocation,
or for that matter frustration, which may occur in an
extended setting. For this reason, television viewing
and reading of entertaining content were allowed
and in fact were offered as standardized means to
aid our subjects to remain in a physiologically
stationary condition of steady state throughout the
session. The stationarity of a physiologic system,
however, needs to be discerned from its statistical
stationarity, especially when its long-range behavior
is studied. Statistical stationarity, that is, the lack
of time dependence in the statistical descriptors, is
not a prerequisite for a physiologic system to operate
in a steady state, as one or more of its parameters
may spontaneously fluctuate (Bassingthwaighte
et al, 1994; Eke et al, 2000)—as did CBV in our
subjects—in a nonstationary manner, referred to as
fractional Brownian motion (fBm) (Eke et al, 2000).

We used spectral analysis as a numerically tested
fractal tool (Eke et al, 2000; Elbert et al, 1994). The
Fourier spectrum captures two fundamental aspects
of CBV dynamics: amplitudes and phases of fluctua-
tions and the rate at which these occur. The former
two relate to power and the latter relates to the
frequency of the spectrum. From our local power
slope analysis of the fluctuation spectra, two
separate modalities in CBV dynamics were identi-
fied: a random emerging in the high-frequency
range, and a fractal that blends events of low
frequencies into a self-similar order (Figures 2-4).
In our study, these modalities were found to be
complementary: while amplitudes were dominated
by a fractal pattern in a structured manner in the low
end of dynamics, higher frequencies were domi-
nated by biologic noise of maximal complexity
where no structure in the signal was present. The
former was a realization of a nonstationary process,
while the latter was a realization of a stationary
process (Figure 5, upper right and lower part). They
themselves should be regarded as separate signal
entities, fBm and fractional Gaussian noise (fGn)
bearing a fundamental impact on fractal time-series
analyses as described in detail elsewhere (Eke et al,
2000, 2002). Increments of an fBm signal produce an
fGn process (Eke et al, 2000, 2002). In light of these
definitions, our CBV fluctuations were made up of
the following two modalities: a random fGn and a
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fractal fBm with anticorrelated increments of an fGn
character separated by f'. As detailed elsewhere (Eke
et al, 2002), the degree of correlation in an fGn signal
can be assessed from its autocorrelation function.
Specifically, its k-lag autocorrelation coefficient, r,
defines how strongly the momentary value of the
signal depends on its past values k-lag apart;
the higher the '°¥B the slower the r, decays, in other
words, the longer the memory of the process. The
correlation for the nearest neighbors is given by
r,=2"2-1 (Eke et al, 2000, 2002), where f is that of
the fBm signal. Increments of an fBm signal creating
an fGn signal are uncorrelated, or random when
r,=0, correlated when r,>0, and anticorrelated
when r, <0. In cases when r; #0, past amplitudes
will influence future ones in the process to an extent
given by r;, often called a long-memory process (Eke
et al, 2000, 2002). Most of our CBV records were
r; <0; hence, memory in these instances can be
considered as the overall anticorrelating influence
of all those factors that limit CBV drifting out of the
physiologic range. One possible physiologic inter-
pretation of the anticorrelated increments observed
in most of our CBV signals is that a negative
feedback-type control, most certainly of myogenic
origin, operates in the monitored vasculature, which
is a mechanism that is eliminated with age in
postmenopausal women only.

A chaotic explanation of CBV dynamics was
rejected because of Dy > 3, and because the
respective ranges of raw and surrogate series over-
lapped for D, and A,... Failure to show chaotic
dynamics suggests that synchronized chaotic vaso-
motion was absent in the monitored vascular trees,
which, however, does not preclude that nonsyn-
chronized chaotic patterns could still blend into a
regional fractal or random pattern of CBV dynamics,
provided the window of observation is long enough
for these variations in oscillation frequency to be
captured. Indeed, in a narrow window of observa-
tion (in 85.3-sec records), using NIRS monitoring
of spontaneous CBV fluctuations, Schroeter et al
(2004) reported oscillations centered around ap-
proximately 0.02 Hz (very low-frequency oscillation,
VLFO) and 0.1 Hz (low-frequency oscillation, LFO)
in female subjects, and showed that the latter
decreased with age.

Nevertheless, our findings of a complex, fractal
pattern of spontaneous CBV fluctuations are not at
all in conflict with the observations of others (Elwell
et al, 1999; Schroeter et al, 2004), who, in short NIRS
signals, found them to be oscillating, but instead, are
indeed complementary. Namely, while VLFO and
LFO are seen and defined in a narrow window of
observation (85.3 secs), in extended records of our
study, they tend to blend into a self-similar,
structured, correlated order, most likely because of
variations in the pacemaker rhythms along the
vascular tree. This translates into a spread of power
in the Fourier spectrum, destroying the isolated
peaks of oscillations. Interestingly, the raw time



series of Schroeter et al (2004), shown in Figure 1,
do appear complex like our records; still, factors,
such as a short window of observation (512 data
points), the substantial temporal averaging applied
(17:1), and, very importantly, the linear scaling that
these authors used in representing their spectra
together, while favoring identifying local peaks,
failed to identify the long-range correlation struc-
ture, which, in fact, was not their aim but ours to
achieve. Conversely, our log-log representation of
the spectra along with line fitting of a fractal model
across a range of spectral estimates (Eke et al, 2000,
2002) cannot overlook identification of the fractal
long-range correlation in the fluctuating cerebrocor-
tical hemodynamics. In a preliminary test, the VLF
and LF peaks could indeed be found in the spectrum
of some shorter segments of our extended NIRS
records. Furthermore, in a group of 14 female
subjects, these authors showed that LFO diminished
with age, a finding supported by our results as we
showed that f’ decreased beyond the lower limit of
their LFO range, that is, 0.07 Hz, more in women
(F2: 0.0540.04 Hz) than in men (M2: 0.11+0.04 Hz)
in the postmenopausal (elderly) age groups. Our
study gives evidence of the fact that the persisting
VLF-type fluctuation in the elderly is not like in the
young, but is of an altered correlation structure,
again more in women than in men.

Intaglietta (1990) proposed that VLF vasomotions
are produced by large vessels, while LF vasomotions
are seen in terminal arterioles. On this premise,
Schroeter et al (2004) related their VLFOs as
originating from larger vessels and LFOs from
microvessels of the brain, a view that we share. It
is also known that the intraparenchymal arterial tree
is formed by generations of branching vessels from
the largest to the smallest diameter connecting with
the capillary rete. It indeed, seems, likely that the
self-similar decline of power amplitudes from the
lowest frequency to the cutoff frequency in our
spectra can be regarded as being produced by a
continuum of vasomotion amplitudes from the
large- to the small-diameter vessel segments of the
monitored vascular tree. This gradual loss of power
towards the high frequencies is more pronounced in
the aging woman, where it is also associated with a
narrowed fluctuation amplitude, which corresponds
well with the fact that in aging men the extracranial
large, while in the aging women the intracranial
medium-size arterial disease predominates (Caplan
et al, 1986). Taken together, it is reasonable to
conclude that age-related increased vessel stiffness
because of fibrosis (Lundberg and Crow, 1999), and a
decline in pacemaker activity in the microvascular
smooth muscle cells lead to a narrowed fractal range
of fluctuations more in women than in men, and a
restricted fluctuation amplitude in women only.

These gender differences can most certainly be
attributed to the effects of female sexual hormones,
primarily estrogens, as most estrogens are known to
be active on the cerebral vasculature (Hurn et al,
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1995; Murphy et al, 2004; Rubanyi et al, 2002;
Watanabe et al, 2001). Estrogen reduces vasocon-
striction elicited by serotonine, thereby decreasing
the vasoreactive properties of cerebral vessels
(Belfort et al, 1995; Shay et al, 1994). In addition,
by reducing the resistance of the middle cerebral
artery (Collins, 2001), estrogen enhances CBF com-
pared with the values found in age-matched males,
an effect that deteriorates after menopause (Rodri-
guez et al, 1988). The removal of the vasodilatory
effect of estrogen and increased atherosclerosis in
postmenopausal women (Belchetz, 1994) resulting
in a stiffer, less-reactive cerebral vasculature may
thus underly the observed narrowing of the dynamic
range and that of the amplitudes of fractal CBV
fluctuations. These factors gain momentum after
menopause and can most certainly be attributed to
the increased morbidity with respect to cerebrovas-
cular diseases, especially ischemic and hemorrhagic
stroke in women, as studies have shown that
postmenopausal women who have a stroke are more
likely to die than men, or if they survive, they are
more likely to have a poor outcome (AHA, 2002;
Murphy et al, 2004).

Our approach of utilizing a combination of
noninvasive NIRS monitoring and fractal analysis
of a long-term correlation pattern in spontaneous
CBV fluctuations may prove to be a useful tool to
identify a potentially risky cerebrovascular condi-
tion before any manifest symptoms of ischemic
cerebrovascular disease or hemorrhagic stroke de-
velop: if a much lowered f’, and hence lack of LFO,
and a much narrowed range of fractal fluctuation
amplitudes develop in the elderly, it may lead to an
impaired adaptation to suddenly developing under-
or overperfusion tendencies in the peripheral cere-
brovascular bed that cannot be effectively handled
by the persisting large vessel reactions and their
neuronal control mechanisms (Ursino, 1991), both
being much too distant from the peripheral vascular
events.
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